Dmitriy Glamazda

THE QUANTUM THEOR Y
OF FIELDS OF MOTION

Translatel from Russian by VyacheslavDudnyk

VOLUME 1

EKATERINBUR G
2017



UDK 530.145
BBK 22.31
52

Glamazda, D. V.
G52 The quantum theory of elds of motion, v. 1/ D. V. Glamazda. { Ekate-
rinburg : OOO lzdatelstvo i tip ogra a "Alfa Print", 2017.{ 528p.

ISBN 978-5-905617-96-6

This book outlines a new theory, which is based on the idea that motion is
responsible for any obsened e®ects. Motion “elds is a new concept related to the
description of a kind of quasi-cortinuous environment { a vacuum, which is one of
the stepsin structural organization of the matter. Attention is given not only to the
interpretation of the phenomenain the micro-world, but also to the mathematical
apparatus. The book preseris a newapproad { there is a universalformalism of scalar
wave functions. One of the chapters is dewoted to the veri cation of a new theory on
known problems of quantum medanics. A number of new results are received. In
addition to explaining the basic quantum-mechanical paradaxesto important results
include expressionsfor "internal" “elds of motion of the electron, the relation for
the massdefect, the conclusion about the status of weak, strong and gravitational
interactions, and qualitativ e models of the particles.

The book is recommendedfor everyone, who interesting to new approadesin

fundamental physics.
UDK 530.145

Scienti ¢ edition BBK 22.31

Glamazda Dmitriy Vasilevich

THE QUANTUM THEORY OF FIELDS OF MOTION
Vol 1
Corrector O. P. Ignatyeva Artistic designby author.

Signedfor print 09.01.2017.Format 165£ 267 mm2. Conv.prn.Ist. 42,9. Edition 80 cop.
Order N 0 5358.

Printed in OOO lIzdatelstvo i tip ogra a "Alfa Print"
650049,Russia, Ekaterinburg, Avtomatiki lane, 2g
Tel.: 8 (800) 300{16{00
www.alfaprint24.ru

ISBN 978-5-905617-96-6 °c D. Glamazda, 2017

°c 00O lzdatelstvo i tipogra a
"Alfa Print", 2017



Contents

Preface . . . . . . . . . .

1 Why new theory needed

1.1 What about in thisbook . . . . ... ... ... ...........
1.2 Almost understandableworld . . . . ... .. ... .........
1.3 What we obsenein microworld . . . . ... ... ... ... ..

1.3.1 Is the measuremen carry out instantly? . .. .. .. .. ..

1.3.2 Theroleoftheobsener . . ... ... ... .. .......

1.3.3 Reality ofobsemnables . . . .. ... ... ... .. ...,
1.4 Incompletenessof QFT . . . . . . . . .. .. .. .. ... ...,
1.5 Zitterb ewegung,or electron besidehimself . . . . .. ... ... ..
1.6 Particlesorwaves?. . . . . . . . ..
1.7 Wheremassmay befound? . . ... ... .. ... .........
1.8 Theory destinedto replaceQFT . . . . ... ... .. ... ....

2 Development of the QTFM
2.1 Time and spacein QTFM . . . . .. .. ... ... ... ... ..
2.2 Field of motion . . . ... ... . ... ...
2.3 Densitiesof dynamic variables. . . . . ... ... ... ... ...,
2.4 Instantaneousand obsenable valuesof variables . . . . .. .. ..
2.5 Stochasticity. Con guration space . . . ... ... ... ......
2.6 Complexdensities?. . . . . . . . . . . ...
2.7 DoesGod playsdice . . . ... ... . . ...
2.8 Superposition of elds of motion . . ... ... .. ... ......
2.9 Energy-momenum of eld of motion . . . .. ... ... ......
2.10 Angular momertum of eld of motion . . ... ...........
211 SpiN . .. e e e e e
2.12 About angular momerntum at imaginary density . . . . .. ... ..
2.13 Equation for dynamics of elds of motion . . . ... ........
2.14 Interaction . . . . . ...
215 Current of eld density . . . . . ... ... ... ..
2.16 Interferenceof elds. Obsenability principle . . . . . . .. ... ..
2.17 Electromagnetismplus gravity . . . .. .. .. ... ... .. ...



Preface

All time human try to nd the basic elemers of the Nature. The desire to
reduce the diversity of the world around us to a small number of main elemerts
sometimesled to very popular and long-lived concepts. Even before Aristotle,
the Greek philosophersbelieved that everything that exists consistsof 4 primary
elemerns: re, earth, water and air. Aristotle expandedthis list by adding one
"innovative" material { ether, especially for celestial spheres. Heaven should be
more perfect than the terrestrial. lronically, somecerturies later this "heavenly"
substancebeganto be consideredthe only elemern of the world. And it was a
time when "exact science"had beendeveloped. Even Faraday and Maxwell used
the concept of ether when they tried to understand the electrical and magnetic
phenomena. Ether has beena unifying basis.

At the beginning of the twertieth certury everything had beencollapsed. The
ether was declared outside the physical law, the conceptual unity of matter has
been disappeared. That had been replaced by the physical “elds, eah with its
own set of properties and its own nature. The exception was only for electricity
and magnetism, which were combined in the electromagnetic eld. Hundreds of
elementary particles had been added to the list of isolated entities in twentieth
certury. It was necessaryto look for rst elemerns of the universeagain. But
sincein physicsthe method was establishedby mathematically precisedescription,
then "visual images" asthe primary method were abandoned. Fundamertals must
have a brevity and completenesdo the mathematical axiom. They must have the
property of being a number or the formulas. The rest of the structure of physical
theory should logically follow them. There are very tough requiremerts and they
do not provide an opportunit y to drag this or that elemer into theory just because
you likedit. Thusthey put narrow framesfor clarity, sonarrow that visual clarity
disappears. But, asis often the case,this drawbadk is a cortin uation indisputable
dignity such as this phenomenologicalapproac suggeststo use a mathematical
devicewhich you can useto correctly calculate the result, and this result will take
place during the experimental veri cation. All this is correct and can be tolerated
until the gaps or errors where found in the structure of the theory or until the
experiment brought the results which did not t into the constructed scheme. But
somesciertists still want a "visually" clear theory.

For more than half a certury the physics of elemenary particles is expecting
"the nal theory". Theorists hold out hopes for gauge methods. In the 70s of
the last certury there was a time when these methods brought a great success.
A theoretical combination of electromagnetic and weak interactions, and also a
description for strong interactions had been obtained. There after theorists and
experimenters sert their e®ortsin this channel. A Standard Model of elemen-
tary particles had beencreated. Number of the "elemens" of the universewere
determined exactly: 6 leptons, 6 quarks, 4 electrowveak bosons, 8 gluons, as well
as the graviton and the Higgs boson. Practically all theoretical literature on the
microworld has becomea tool to apply the symmetry methods in eld theory. It
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seemghat this "world construction system" canonized,asoncethe Ptolemaic did.
Eventhe personswho work on so-called"'new physics", do not run the risk of being
called "heretics". They seetheir own theories are all in the samegaugeversion,
but only in a larger spacedimensionality and with the transformation group of
higher rank.

It is said that mathematics is the languageof physics. Howewer, | would like
to protect myself from imperceptible substitution, if it suddenly mathematics sub-
stitutes the meaning of physics. Apparently, in addition to the ability of direct
application of logic to obvious facts, the personhassomeability of deepperception.
Probably, it can interfere with the aesthetic sense.For sometime | could not read
anymore works wherethe authors easily operate the renormalization group, the 8-
or 26-dimensionalspaces.In whatever concreteform they are embodied theory, it
will always remain a phenomenologicalscheme. There isn't enoughmodels which
take an intuitiv e senseof understanding. In this regard, | want to nd a book,
which is not only a recipe for calculations, but also givesthis understanding. Since
no one wrote this, | had to do it myself.

28 August 2016 Dmitriy Glamazda






Chapter 1

Why new theory needed

1.1 What about in this book

The physics books are usually preseried in a traditional scierti ¢ style. This
style may substitute sleepingpills at night. We try to counteract this undesirable
e®ectin this book. It should consist of new. This book presers a lot of new
ideas. Foundations of quarntum theory hasa new look. | have a senseof legitimate
skepticism of the readers. Quantum theory has existed for a hundred years and
after so much time from where can a new theory appear? Where was it, why it
did not break through in the last certury? Can there still be something unclear
about a theory that reliably serves so much time? Here is the birth of quantum
medanics in the early XX certury { it was another thing! It brought to physics
many new approacesthat only the scierti ¢ revolution could have brought. But
the revolution cannot cortin ue forever. Copenhageninterpretation hasbrought the
line of controversy in 1927. Quantum theory has been acceptedwith incredible
ditculties. Almost a certury has passed,from the time when QFT { quantum
“eld theory was deweloped on the base of quantum medanics and the theory
of relativity. The focus of attention shifted to it and to new problems, and the
problems of the baseswent into the shadavs. Everything has calmed down.

And newertheless,the new physics in this book constitutes the main part of
the cortent. It is necessaryto look badk to the "epic end" of the construction of
quantum theory to understand the origins of the problems. On the one hand {
a triumphal processionmathematical apparatus of quantum mechanics and eld
theory, a numerical explanation of almost any experiments in atomic and sub-
atomic physics. But, on the other hand, the notorious rejection of the theory's
clarity. The feeling of the full victory has disappeared becausefor the successof
calculations physicist had to pay very high price. For the rst time in the history
of physics, sciertists were forced to abandon visual images,from determinism, to
intro duce a concept, combining mutually excludedconceptssud ascorpusclesand
waves. Albert Einstein for the rest of his life believed that for a physical theory
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8 CHAPTER 1. WHY NEW THEORY NEEDED

this is an inadmissible sacri ce. The creators of the quantum medanics: Louis
de Broglie, Ervin Sdcrodinger, Paul Dirac, have not experiencedmuch ernthusiasm
from the steady the state of a®airs. The situation with quantum theory after 1927
could be comparedwith intensediscussion,when the participants did not agreein
many aspectswith ead other, but agreedon the inevitable rules that are common
for all, regardlessof beliefs. Usually in sud cases,all parties hope that time will
put everything in places.

It seemsthat now, after a certury, there were glimpses of a new vision of
those old problems. In his famous categorical statemerts about the principle of
incomprehensibility of quantum theory R. Feynmanand S. Weinberg were wrong:
quantum theory can be understaod! The story about this { that which is new, was
merntioned above. You will seefor yourself where the probabilistic nature of the
behavior of objects in the microcosm, i.e., why quantum medanics losespart of
the classicaldeterminism. It will becomeobvious to you that it is impossibleto
require for the so-called"quantum™ laws of motion to beidentical to classicalones.
Before you appear a uni ed equation of dynamics QTFM, the models of individual
elemenary particles, vacuum theory and others "technical" details. Howewer, |
considerthem secondaryin importance, the main thing is the resolution of those
"damned" world outlook questionsthat were not solved in quantum theory. It is
clear that believing in these promisesis not easy Soright now I'll try to brie®y
demonstrate someelemeris of the promised new, and the reader can immediately
decidefor himself, is interesting to him of this book, or not.

Any new theory beginswith a guess. If in somework it does not, it cannot
claim novelty. Such a work at bestcan be a good exposition of known facts, it will
give the necessarydirection for the reader's thoughts to comecloserto unravel a
mystery, but he will not do the decisive step. Our guessof No 1 will be a clause
about the essenceof the quantum movemen. Physics of the twertieth certury
encourtered new laws of motion, but it did not have enoughstrength to solve this
problem correctly. It was concludedthat the movemen in the macro- and micro-
worlds are radically di®erert (formally we cannot argue with this the statement!).
Movemen was divided into the two types{ classicaland quantum. In both cases,
there was a mecanical movemern like a changein the position of an object in
spaceover time. It never occurred to anyone that in the caseof the microworld,
‘rst of all we encourter a changein time not of the coordinates, but the form of
motion. Of course,in principle, sudh a movemert by default includes a change of
coordinates, including, as a result of which is a movemert in the familiar classical
sense.But in the rst place- this movemert is quite a di®ereri level of organization
of matter, it is an evolutionary movementthat could be to calledthe "movemert of
motion”. This so called state in quantum medanics should be called the state of
motion. Wave functions { the vectorsof Hilb ert space{ are not identi ers of some
frozen material con gurations, but should de ne the "form" of motion at certain
stagesof cortin uousewolution of the system. Therefore, the main "actors" in them
are not the coordinates, but the conjugate dynamic variables as the momertum,
energy angular momertum. One movemert transfersto another, then to the next,
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and so on, until it makes senseto talk about the existenceof the system under
study. Regularities of such a kaleidoscope of alternating forms of movemert that

constitute ewolution have not beeninvestigatedin classicalphysics. They became
the subject of consciousstudies only closerto the end of the XX certury, entering

the core of the new discipline { synergetic.

The QTFM usesthe provision that movement of motion is movement The
ewlution of motion should be studied along with the "true" motion ("elementary
motion”). This formally equatesthe ewlutionary and "elemenrtary” motion. For
the eld of motion { the cornerstoneconceptof a QTFM { there is no fundamertal
di®erenceof what level of motion it describes. All this is consistert with the phi-
losophical de nition of motion as an indispensableattribute to the existence of
matter. If you want to study matter, study its motion! Even it seemsthat the
more direct way lies through the study of "grains" of matter, in evertually come
to the study of the movemert. Becauseit turns out that "grains” themselwesare
just local movemert intensity concerrations.

But what is the essenceof the ewlutionary movemert, and where does it
comefrom? To explain this, we needtwo important facts. The rst concernsthe
understanding ofwhat exactly we observeor measure in Nature. In physics there
is a notion of obsenable value, or simply observable V. Heiserberg, V. Pauli
and others argued that the equations of the theory should be written down for
quantities, which are obsenable. It is in connection with the developmert of
the apparatus of quantum mecanics on this concept, perhaps, that it was rst
looked at not assomethingof itself of course. We noticed that when measuring,the
devicealways hasan e®ecton object, and to getrid of this action is fundamentally
impossible. But we missedone essetial detail. Whatever we measure,the act of
measuremet itself is always a processhat hasabeginning, a duration in time, and
an end. This is always performed action. Incomplete measuremenh is nonsense.
For example,we measureforce. If we are usingthe spring dynamometerwe register
the changein the length of the spring. The spring doesnot stretch instantly, this
takes sometime. If we use a piezcelectric sensor,then the deformation of the
crystal and the appearanceof chargeson its facesalso requires sometime. In
principle, the value of the measuredquartit y is always formed in nite, non-zero
time interval. Increasethe sensitivity of instruments, miniatures of sensors,etc.,
allows to reducethis time, but up to a certain limit. When the sensoritself is on
one scalestep with object, that meansit will be a particle of the microworld, we
will beforcedto drop our "macroscopic” extrapolations about its ideal speed,i.e.,
momert in the limit. We can no longer managethe joint "dance" of the deviceand
the object, and the measure(simply their interaction and reaction to ead other)
will last aslong asit should be in the microcosm. In this way, the instantaneous
transition betweenstates and the following from are sud speculative things, like,
for example, the reduction of a wave function, is nothing more than hypothesis
which no onein principle can derive logically. Creators of quantum mecanics at
onetime agreedto believe that this is so. They werelooking for a minimal theory
describingthe results of the experiments of thoseyears. Today we seethe fallacy of
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this hypothesis. Change of state can not occur instantaneously The consequence
of this is that the measuredvalue is averagefor small, but always nite time. This
is our guessN o 2.

Another fact will help usunderstandthe essencef the ewolutionary movemert.
It is that the main obvious di®erencebetweenthe microcosm of the macrocosm
are the space-time scales. Becauseof the huge di®erences,and becauseof the
above described irremovable duration of the measuremeh, we can not receiwe
instantaneous values of the dynamic variables. We get the result, which does not
seemto be averagedand coincideswith the so-calledequation to eigervaluesonly
in caseswhere the measuredquartity is the integral of motion. Howewer, this is
just atrivial illusion connectedto the fact that the averaging of the value that is
consened, i.e. constarts, by de nition givesthe samevalue! For example, in the
caseof plane wave we have "reliable” measureof the momertum, and in the atom
it is the energy magnitude and projection of the angular momertum. It happens
becausethesetypesof motion the valuescan remain for an inde nitely long time.

Let's combine our innovations together. The equationsof theory must be local
to satisfy the requirements of the special theory of relativity, i.e must describe
the behavior of the wave function in point at a certain time. Further, dynamic
variables can be found through the wave function, but, unfortunately, not unam-
biguously. Quadratic by wave function combinations allow you to determine at a
point not the dynamic variables themselwes, but only their density. The densities
should be integrated over spaceand time to get the valuesand to ched, if there
are equalto the measuredin the experiment values. Thus, the uni ed idea of every
physical value appearing in the quantum theory, which is broken up into two: one
valueis local and usedin formulas, the other is integrated over spaceand time and
measuredby experimert. A special caseare the caseswhen the dynamic variable
does not change, so the physical value in the equation on eigervaluesand in the
measuremet is the same. This thesis brings the founders of quantum medanics
into delusion...

The formulation of the dynamics of an object through the wave function and
the subsequen connectionwith by integration were formulated on the baseof the
suggestionthat we are dealing with a segmen of history of an extendedobject and
can describe its current state only asthe geometry of the distribution of dynamic
variables in spaceand someaveragednumbers. The "elementary" movemert go-
ing into the paceis incommensurably higher than the measuremeh, and remains
outside the limit of perception. The theory givesonly the ewolution of its forms.
In ead of the individual ewolution "frames" the kaleidoscoge of elemenary motion
is presenied exactly, but this motion is hidden from us just asthe motion of an in-
dividual air moleculein a soundwave is hidden from the musician's hearing. Only
the form of the equations allows us to guesson the speci ¢ form of this immea-
surable motion: if we usethe relations for the motion of a charge in the Coulomb
“eld and obtain identical theoretical and experimental results, hence,the electron
really somovesin the atom. Otherwise, there would be no matching results. But
we do not have to represen the electron asa material point. It is possibleto allow
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some connection betweenthe two extremes of the idea that the point moving in
the Coulomb “eld of the nucleusis the certer of massof the electron. What is the
electronitself it is an independert question, and only recognition of the dominant
role of motion in theory allows us answer to this question. As | said earlier about
"grains" of substance,it's just an areaof increasedintensity of motion. The equa-
tions of the new theory are designedto give the speci ¢ geometry and dynamics
of this eld.

Now | wish to say a few words what the reader should be ready for. This
book is not a textb ook, sothere is no systematic progressionof the material from
simple to more complicated. It is assumedthat the reader is familiar with the
main sectionsof quantum medanics and the ditculties that it had to overcome.
Possessiorof mathematics is desirablein the volume of generaluniversity course.

Finally | would like to give one piece of practical advice. In classicalphysics
there is a mystery closely related to what is said in this book. The answer to
it can serwe as key to understanding the internal medanism of the many elds
of movemen. This is a mystery that arisesin the theory of electromagnetism.
Everyone know that the electric charge eld is graphically depicted by the lines
of force that start and end on the charges. The lines of force have a direction
depending on the sign of the charge. It is acceptedthat they exit from positive
chargesand enter to the negative ones. In connectionto this, the positive charges
are sources and the negatives{ drains of power lines. Sometimesthe terminology
is simpli ed and the lines of force are simply spoken of asa eld. Positive charges
are called sources,and the negative { drains of electric eld. And herethe question
arises: if from something nite something constartly °ows out, why doesit never
comesto an end? The magnitude of the chargedoesnot changewith time, although
the electric "eld "drain" or "°ows" forever aslong asthere is a charge exists. You
canjustify to yourselfthe fact that the lines of force are a mathematical abstraction
that should not be ascribe material properties. But this sewnwith white threads
and fall apart as soon aswe recognizethe basic principle of the new theory: all of
the being is obliged to move. In this case,the certral symmetry of the Coulomb
“eld leavesno doubt that it is really connectedwith somean unobsenable motion
having an appropriate geometry With the needthis should be a movemert from
the center or toward the certer. So, after all, something really “ows in or out!
And we are forced to return to the samequestion: why doesthe charge amount
not change?

And now | presen the promised key. The last question was posedincorrectly.
The amount of charge varies. Moreover, it oscillatesby a sinusoid, i.e. part of its
period is positive, and some{ negative. In someinstants it happensto be zero.
But there is a completely di®eren picture, the chargesare constart! { you will
sa&y. The thing is that there is something like a stroboscopice®ect. Chargesare
always obsened with the help of other, so-calledtrial charges Their interaction
is registered. Imagine how things should look if all electrical charges oscillate
at the samefrequency Then the obsened picture depends on the spontaneous
synchronization of the probe and the investigated charges. It is important that
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due to equal frequency for all chargesthis synchronization will be constart. If
the investigated charge is attracted to the test charge, then it is "negative"”, if
repelled { "positive". Of course, the interaction force also oscillates, but as a
squareof a sinusoid, i.e. without changing the sign. Averaging over time, it gives
the obsened e®ect. Thus, the obsened chargeis an e®ecﬁhe charge. By analogy
with the operating voltage in the AC circuit, it is lessin = 2 than the amplitude
value. Sud a solution to the puzzle shedslight on the question of the sourcesand
drain of the electric eld. We, asit were, "correctly" seeonly half of the period
when the movemert is, for example, from a charge. The secondhalf of the period,
we also "see", but "incorrectly”, becauseour "eyes" are the trial charge, which
changethe "p erception” to the opposite. For half of the period the chargedobject
is the source,for the other half it is the drain. In general,for the period we have
zerobalance. Obviously, this processhasno time limit and it is quite natural with
sudh an organization that the obsened chargeis "eternal and unchanged". Using
this "key to understanding” will greatly facilitate the perception of the motion
“elds described in this book.

1.2 Almost understandable world

Currently the so-calledStandard Model (SM) dominatesin elemenary particle
physics. It is built accordingto the rules of quantum "eld theory (QFT). Accor-
ding to SM, arelatively small number of typesof truly elementaryparticle lie in the
basis of all diversity of material world. Convertionally, they can be divided into
two classes:the particles that make up the substanceand the particles carrying
interaction. The former include the massiweleptonse, 1, ¢ and their corresponding
neutrinos ¢, °1, °, and quark u, d, c, s, t, b. The spin ead of these particles
is equalto 1=2, i.e. they are fermions. The secondclassincludes particles W™* ,
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Wi, Z9 the photon °, eight types of gluons ge and the newly experimentally
discoveredHiggsboson"). Theseparticles are bosons i.e. theg have an integer spin.
Intermediate vector bosonsw 8 , %, and the Higg's bosonH * have a mass,the rest
of the particles are masslesswhich meansthat they canonly existin the movemert
with the speedof light. It should also be mertioned that the antiparticles of the
above-mertioned classeswithout which a set of "building blocks" of the Standard
Model would be incomplete. They di®er by opposite signs of electric chargesand
somespeci ¢ quantum numbers from their antip odes. A vast classof compound
particles such as mesonsare formed due to them. There are quark-antiquark pairs
according to the Standard Model.

The Standard Model is created, but it does not shov a way for farther evo-
lution. Picture of the world, drawn by the Standard Model, is obtained quite
harmonious. It could even be consideredcompleted, if gravity is excluded. Ne-
vertheless, this book raisesthe question of a new physical theory. And we are
not talking about the next calibration model basedon the new group of higher
order symmetry. To a large extent the choice of a fundamertally new way due to
the fact that the theory, which is currently called theories of "new physics" really
is on the samecalibration rules as the Standard Model. However, the evidence
suggests,that after the completion of the SM this way for nearly half a certury
does not produce any “"revolutionary” results: theorists have created a number
of theories (string, supersymmetry, loop gravity, etc.), which { alas! { can not
yet give preferenceto the SM in a deep study and { especially! { on the part
of experimental con rmation. At least, they can't compete the Standard Model
within today's available capacitiesof boosters. Any fruitful conceptsooner or later
are exhausted. This time can be known on the sharp decline in issued practical
results. For the matter of fact the Standard Model is an apotheosisof the calibra-
tion methods. Formally the calibration methods can give more, but this is just an
abstract mathematics. Further progressis only possiblethrough other methods.
Our theory is completely di®eren. It doesnot usethe symmetry approac and it
is focusedon the physical meaning of known phenomena. For this reason,it does
not repeat QFT.

Any internally consistent theory can be formulated on the basisof somepostu-
lates. And any theory can be replacedwith another consisten theory, if postulates
are formulated. It may be enoughto changeone postulate for a newtheory. But it
is easyto say: "Change postulates"! This is more dizcult than to lay down a new
chimney againin the sameplace without disturbing the old one at the sametime.
To date, all the achievemerts of elemenary particle physics basedon QFT. Can
we change something in the mathematical apparatus, which is almost a certury
successfullyusedfor the prediction of the results of experiments? We often to hear
that the Standard Model explains all experiments. Talk about the needto replace
the said theory seemuntimely, and even blasphemous. Nevertheless,the audit of

1 The carrier of the gravitational interaction graviton is outside the scope of the Standard
Model.
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postulatesis possibleto make for two reasons.

First, who saidthat the newtheory completely abandon existing mathematical
tools?! Formalism in someof its parts can be saved. This implies that part of the
fundamertal provisionswill remain in force. But unlike mathematics postulatesin
physics have not only formal mathematical expression,but a physial meaning. In
principle, it is possibleusethe sameequationswith di®erer physical meaning of
using new postulates. This will lead to a changein treatment not only for meth-
ods, but alsofor the results of the theory. Opposingsuc a move is unwise though
if only becausethe convertional wisdom about all explaining experimernts in the
Standard Model { it is a gure of speedh! Modern quantum theory is 100% phe-
nomenological,it does not explain, but numerically con rms experimental data.
For this "explanation" it is enoughto have a set of mathematical recipesand mod-
els, assenbled step by step at a constart painstaking inspection of experience. An
exampleof a erroneoustheory for a long time { more than a thousandyears!{ sat-
is es the experimental veri cation and can serwe as a Ptolemy's geccertric model.
If the causeis organizedin a sucdh manner (i.e. when rate is made for quartitativ e
description), the formal expressiongor postulates (their mathematical record) are
dominated. A physical interpretation may remain in the shadawv. Di®erert rea-
sonsbrought to sud a state of a®airsat di®erent times. Rejections of visibilit y
in quantum medaanics were made due to the appearanceof logical contradictions.
Meanwhile, it is obvious that the creation of a consistert visual interpretation
should lead to the theory where the status of high-quality results must not be
inferior to the status of quartitativ e results. It will be not phenomenologicalbut
the real theory.

Secondly the new provisionsmay be addedto the initial setof postulates,which
will leadto the expansionand changesin functionalit y of the theory. Contradictory
facts are able to get if not a description, then, at least, evidenceof consistencyin a
newlight. For example,the wave-particle duality and impossibility of simultaneous
measuremets non-comrmuting dynamical variables are well known cortradictions
betweenthe point of view of classicalphysicsparts of quantum. Physicists believe
that it is the prerogative only the quantum theory and that macroscopicworld is
completely di®ereri. All have long beenaccustomedto the fact that the terms
"non-classical” and "quantum mechanical" are used as synoryms (by the way,
whether it adds somesense?).0n the other hand, what do know we today about
the laws of the evolutionary movement? What are their attribute connectedto the
classicalor the quantum? For the "macro”- or "microscopic"? If we assumethat
the quantum medanical motion is essetially ewolutionary movemert (evolution of
motion states, why not?!), then you cannot hurry to declarethat the uncertainty
principle is only quantum. The laws of the ewlutionary movemen, that physics
has not yet bothered to study, may be very di®erent from the classical laws of
motion of point with their Laplace determinism. The above mentioned phenomena
of quantum theory may be the natural from this position.

Even if the Standard Model correctly describesthe relationship between par-
ticles, it neverthelesscan not be the nal theory of elemenary particles for the
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reasonthat it doesnot give any idea about "construction” of the basic particles.
As noted above, the Standard Model is a phenomenologicaltheory. One of SM
most important "working tools" is a calibration method, which usethe properties
of symmetry on the languageof group theory. Group theory doesnot care about
the physical nature (or what processis described by elemerts of the group). The
important thing is that they have properties allowing them to be consideredasre-
lated to the group with special axiomatic. Groups U(1), SU(2), SU(3) are unitary
and describethe rotation in someabstract spaces.Componerts of the "vectors" are
the elds which correspond to the elemerary particles. The preserly known par-
ticles possesgsliverseproperties. Di®erert mathematical objects { scalars,vectors,
spinors, etc. { arerequired to describethe particles. Unifying this ill-assorted com-
pany is possibletoday only at the level of Lagrangian. Lagrangian of the Standard
Model is constructed in such a way that takesinto accourt all of thesesymmetries
and the natural assaiation of particles in multiplets. It includes the fact of the
absenceof right-handed neutrinos in the nature. The equation of motion of any
particle with wave function Ay can be derived from this Lagrangian L using the
Euler { Lagrange equation

d @ @ _
dx’ @@AL) ' @\

Thus, we can say that the Standard Model describesobjects from the type of the
eqguationsof motion only. Howewer, this is not enoughto build a real model of the
studied objects. The sameequation cancorrespond to physically distinct processes.
We demonstrate this in the visual example. For simplicity, considerthe examples
that do not require the useof eld theory, but are also preseried in the Lagrangian
formulation. Mathematical formalismsin this caseare similar, Lagrangefunction?
L plaing role of Lagrangian), and the Euler { Lagrange equation is replaced by

Lagrange equation
i@ @ _
dt@' @
Under g and g are meart k-th genealized coordinate and velocity® . Obviously,
the form of the equation of motion doesnot changeif L or L is multiplied by a
constarnt factor (this follows from equations (1.1) and (1.2)). In other words, the

Lagrangian or Lagrange function can be determined within a constart factor.
So, here'san example. Lagrangian is given

0: (1.1)

o: (1.2)

L = A% 12A% (1.3)

2 Physically Lagrangian is a density of Lagrange function. The transition to the density
becomesnecessaryduring the transition to the "eld theory, which is a contin uous manifold theory.

%) By physical meansthe generalized coordinates are not necessarilyidentical to the "usual"
coordinates in space.
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where g¢ = A, g, = A. What can we say about the object, described by the
function (1.3)? Only that it is harmonic oscillator with frequency! and with
eguation of motion

d?A x

——+12A=0:

dt2 0

And what is its concreterealization? Maybeit's the weight, suspendedand swing-

Figure 1.1: Equation of the harmonic oscillations and someof its realization

ing on the thread (Fig. 1.1)? Or the weight betweentwo springs, rocker without
friction on a horizontal plane? Or an oscillatory circuit with oscillating voltage,
current and charge? The problem posed"up to Lagrangian" can not be answered
to this question! The result is not a speci ¢ decision, but classi cation, relation
of the phenomenato sometype of behavior. The °ow of useful consequence®f
this decision ends very quickly, becauseit can not exceedwhat is contained in
the group properties and in the e2uent of di®erenial equations. Of course,until
these conseuenes are not obtained, their comprehensionis very important, and
the symmetry method make someprogress.But then there comesa time to move
on. Each speci ¢ examplesgiven above are dealing with di®eren physics pro-
cesses.Somewherecritical valuesare massand elasticity, and somewherethere is
agravity or electromagneticinteraction. Subsequetly this requiresusto study the
phenomenarelated to the speci ¢ choice of the model. And "abstract" Lagrangian
approad the question of the choice of the physical nature of the oscillator remains
open. The situation is similar with all the Standard Model. It starts with the
construction of the Lagrangian. Symmetry allows us to formulate the Lagrangian
and nd the type of the "eld, but not its nature. At least, we can not be sure,
that the given answer is nal and now we know all. It is not ditcult to gure out
that this issuedoesnot solve any of the existing today theories of "new physics"
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becausethey are basedon similar symmetry considerations. These include the
theory, basedexclusively on the calibration principle with adjustment of constart
to the experimental data { i.e., practically everything that is published today in
the scierti ¢ journals! Particles physicsin these days becomelike chemistry, ne
tuning their "Periodic Table" classi cation of relationships betweenthe particles,
which with groups attached via concisepossibleform. The experiment dominate.
Howewer, it doesnot meanthat you can apply to subatomic physicsdisparagingly.
Each dewelopmen hasits own laws. Progresscan not be constart pace. Its termi-
nation doesnot comeimmediately, but the realization of this comeslater. At the
sametime without constart accurnulation of experimental data physics can not
dewelop in the future. Sobe patient!

The laws of the ewolutionary movement mentioned above by the reason. They
may play a very important role in the further progressof the quantum theory.
Recall that the rst quantum theory { the quantum medanics { has not been
relativistic invariant. Meanwhile, from theoretical considerationswould it is clear
that the true theory must be relativistic. Therefore beensought relativistic equa-
tions, and was a gradual transition to the eld theory. But nal chord was not
heard: analytical relativistic quantum theory has not been established. One of
the reasonswasthat aslong time noticed by theorists, the theory of relativit y and
guantum theory do not get along together. The most important "di®erencesof
opinion" can be regardedto the requiremert of locality, asthe cornerstoneprinci-
ple in the theory of relativit y, but which (as deemedby virtue of unknown errors)
generatesgreat dixculties in quantum theory. This principle is re°ected in the
fact that the relativistic equationsof dynamics must be recordedin the space-time
point®. In other words, the value of all “elds that appear in the equation, should
be taken in the 4-point. At acceptedaxioms of quantum theory, this requiremen
leadsto the emergenceof divergencedo overcomethat physicists evenwent sofar,
they wereforcedto doubt the principle of locality and to dewvelop di®erernt non-local
guantum eld theory [4]. In particular, form factors wereintro ducedto computing
methods when the principle of short-range interaction was broken. Meanwhile,
there remains one unnoticed possibility of restore order in the relations of rela-
tivistic and quantum theories, without putting doubts the principle of locality. It
is related to the revision of the concept of observationin quantum theory. If we
assumethat the obsenation itself, in principle, not a local evert, and requires for
its implementation of the nite spatial volume and nite time interval that rid of
dizculties and cortradictions.

%) So-called principle of the microcausality being limiting manifestation of the principle of
short-range interaction.
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1.3 What we observe in micro world

At the beginning of the XX certury it has beenaccurulated a lot of experi-
mental material on electromagneticradiation of substancesin di®eren aggregate
states. Physicists have tried to understand its laws. Initially they was interested
on energydistribution in the continuous spectrum of a heated body. As the result
the Planck's formula and the fact that the radiation is discrete have beendiscov-
ered (1900). It turned out that the substanceemits energyin portions, and that
the energy of one quantum is equal

E = h°;

where?® is frequency Later the Plank's constart

h = 6:625¢10' 27 erg¢s (1.4)

becomethe main constart of the new theory.

After the discovery of the law of black-body equi-
librium radiation the spectroscopistsshifted much at-
tention to the line spectra. In particular, it was ob-
sened that the frequenciesof emitted or absorbed
hydrogen lines can be represerned as

u T

° = cR, (1.5)

I—‘:I\J‘ =
I\):l\)| =

where c is speed of light, and Rydberg's constart is
[3]
Ry = 1097373 cmi *:

The most strange was the fact that the numbers

n; and ny had to be integer The approacdes to
the solution of this rule becamepossible only when
Ernest Rutherford E. Ruther_ford in 1911y. unequivocally showed that
the atom is something like a small copy of the Solar

System. Almost the ertire massof atom is concerrated in the certer in the so-
called core,and electronsrotate around the core. About electron physicists already
knew something. For example, its electrical charge and mass. From neutrality of
atom it implied that the nucleus must have a positive charge equal in magnitude
to the amount of electron charges. In caseof hydrogen obtained charge of coreis

5) Units and abbreviation are in Attachments.
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+e. The laws of electromagneticinteraction at that time were known, sothat the
intensity of interaction betweenthe electron and the nucleuswas easyto nd.

It was natural to apply the laws of classicalmedanics to the calculation of
motion of the point electron in the Coulomb "eld of nucleus. Also, it was natural
to assumethat the energy of motion of the electron dependson the distance from
the nucleus,i.e. from orbit itself. Consenation of energy law made it possibleto
assumethat the energy of radiated electromagneticwave is equalto the di®erence
of electron energiesat the initial and nal orbits. Suc or similar argumerts were
engagedin physicsat the beginning, when there have not yet found the answer to
integerny and n,. By that time physicists did not know about the wave properties
of particles of the microcosm. In his theory of the atom, N. Bohr (1913) postulates
this numbers as part of condition for "allowed" orbits in the atom. The fact is
that laws of electrodynamics demand that an atom can not be stable because
acceleratedelectron must lose energy by irradiation and eventually fall into the
nucleus. To overcomethis ditcult y, Bohr proposed postulate that in the atom
there are stationary orbits, being on that electron does not radiate. Overcoming,
of course,it cannot be considered,but no onefound a more convincing argumerts.

With the help of the atomic theory of N. Bohr it
was possibleto calculate the frequency of the main
spectral lines, but only for a hydrogen atom and {
alas! { with low accuracy Many details of the ob-
sened spectra stay unexplained with the position of
Bohr theory. more universal theory would be re-
quired, and for the rst quarter of a certury the
quantum medanicsbecomessud theory. Matrix me-
chanics becameone of the rst working version of
this emerging grand theory (1925{26). A prominent
role in its creation played primarily by V. Heisen-
berg, P. Jordan and M. Born. According to one of
them, mostly requiremert for physical theory must
be to usein its apparatus only those values which
are directly obsened. By trial and error method it
was found that the atom could be comparedto some
vector with complex componerts. It is known, the Niels Bohr
vectors may transformed via matrices®. Thus, the
matrix plays an active role in relation to the vector by specifying somemathemat-
ical operation. In other words, it is an operator. It turned out that experimentally

6 A typical example is the matrix of turns, changing the direction of the vector.
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measuredvalues A of the certain value has vector relation
10 o 1 0 1

a1 a2 il ain 1 C1
dpp dAp2 .. Azn ... Co C2
= AB () Ac = Ac;
(1.6)

where A fa; g is mentioned above matrix, ¢~ fcjgis a vector. Matrix operator

A is closely assaiated with the measuredvalue of A. Moreover, it clearly de nes
what physical quartit y obsened in this case.

For the sciertists raised on di®ereriial equations
of classicalphysicsit was very unusual to seeas the
experimentally obsened value of A is obtained using
matrices and vectors. Howewer, such unusual mathe-
matical apparatus worked: the results coincidedwith
the experiment! The reasonfor successof the ma-
trix approad turned out when other forms of quan-
tum medanicswere found and their equivalencewere
proved (E. Schrodinger), and especially after P. Dirac
and P. Jordan has developed the theory of represen-
tations (1926), the general for the new medanics.
After that, it is not surprising that the componerts
¢ of vector in (1.6) within certain context is equalto
the expansioncoezcients of the total wave function
(WF) in the "Schrodinger represeration” for simple
states:

A= ciAp+ Ay + C0C+ ChA, + i1
Werner Heisenlerg
The formalism of quantum medanics includes a
small number of initial statemerts, so called postulates. Two postulates are di-
rectly related to what we are interested in this momert, i.e. to corresppndenceof
the theoretical and experimental results. In di®eren sourcesits ring a little bit
in di®erent ways, but their meaning is unchanged. Here is their wording, citing

L. Si® [1], pp. 56{57. The rst quote provesnecessaryfor introduction of linear
operators:

"We rst postulate that eachdynamicalvariable that relatesto the motion of
the particle can be representedby a linea operata™.
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This meansthat the energy pulse, and the angular momertum etc. can be written
asoperators. The secondcitation is alittle bit longerand tells us what is the result
of the measuremen in microcosm?):

"Each operata canbe assaiatedwith a linea eigenvaluesquation,de ned nea
the beginningof x 8. Thus with the operata F it may be assa@iated with the
equation

FA=FA,
whereA is the eigenfunctionof F, carrespndingto the eigenvaluer .

Our secondpostulate is that one or another of the eigenvalues- is the only
possibleresult of a precisemeasuremenof the dynamicalvariable representecby

P

The equation shown in the quote,
called the equation for the eigenvalue

of the linear operator F. Matrix (1.6)
is one of the possibleways to represert
linear operators. By a habit that has
arisen due to matrix medanics and
then strengthened by the Dirac Rep-
reseration Theory which streamlines
the quantum-mechanical designation,
function A is often called a state vec-
tor, although it can not be a vector in
the mathematical sense.

For usit is important that regard-
lessof the method of presenation of operators and state vectors any eigervalues,
both in A (1.6) or F, are always the numbers. They are equal to the value which
is obtained in the measuremen That is axiomatic, which is expressedvery brie°y
by the generalization of experiencewithout having logic conclusion. If there has
been at least one measuremeh that violates this law, this postulate would not
exist. However, this should be clari ed. In the secondquotation it is not in vain
that there is an emphasison "the accurate measuremeti'. It meansthat we must
ensurethat we measurethe e®ectof just operator F. A prerequisite for this is that
a state in which the measuremeh is made, should be one of its own states. In this
connection the question arises: and what happens, if any physial quantity being
measured is not in its eigen state?

Solution of this question can be follow. Let multiply the equation for the
eigervalues

FA=FA (1.7)

") We took the liberty of small deviations from cited text book [1], which is expressedin the
replacemert of author's symbols in a more familiar formulas.
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on the left by the Hermitian conjugate wave function A* and integrate both sides
over the entire space:
77 277
A*FAdx = F A+ Adx:

We require that the integral on the right wasnot equalto 0, then the desiredvalue
is equal 777

We seethat F is obtained by integrating over the spaceof a certain value @ * FA,
independert on operator F and on WF A, then dividing by a similar integral,
but without an operator. This expressiondescribes averaging over the spaceof
the result of action of the operator F on the "eld 2, so him got the name the
quantum-mechanical averagevalue of F over the "eld A. When it is normalized to
1 the expressionlooks easier:

277

F= At FA dx:

It is clearthat in contrast to the equation for the eigervaluessuc expressiongives
a numeric result, even when the wave function is not eigenfunction for operator
=% 9
FA = const¢A = zzz

=) E= A*FAdx = const (1.8)
FA=F(r)c¢A -

Here, asabove, it is understood that the function A is normalizedto 1, i.e. satis es
to condition 72727

A*Adx = 1; (1.9)

which is only possiblefor the square-integrable functions.

Obviously, that the averagingof xed and variable valuesis not quite the same.
We illustrate the idea (1.8) with a simple example. The simplest WF is the plane
wave which corresponds to a free particle. To be speci ¢, let the particle moves
along the axisy:

A=¢gPt==¢gPv¥y=;  p = const
Here

h .
~7 7 1:054¢10 7 erg¢s
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is the Planck’s constart "with a dash" (reduced Planck constart). The provided
WF A is proper for the momertum operator, that can be veri ed by direct substi-
tution of expressionj i~r for this operator:

5 ,

PA=ji~r €Y = (pey)A= pA;

whereey, ey, e, arethe Cartesian unit vectorsof the coordinate axesx, y, z corre-
spondingly. The value of the required quartit y such asmomertum doesnot depend
on the coordinate, i.e. it is not a function. Each componert can be expressedas a
xed number: p = (0; py;0).

An attempt to calculate the average value of momertum of the plane wave
using the integral of all spacesuddenly encourters an obstacle: a plane wave is
not square-irtegrable, and the integral is divergert. Special technique is usedto
overcomethis dixcult y. The function A has not dependency of x, z and it is
periodical of y:

Ay + n,) = A(y); n=181,8283; :::

Obviously, this allows us to considerthe wave function in the rectangular region
Vo, where dimensionsfor x and z are arbitrary but constart, and the sizefor y is
equal to the de Broglie wavelength

, = ~=p: (1.10)

All the spacecan be divided into suc rectangular regions, where form of the “eld
A is repeated.
First, we nd the normalization integral:

7727 7727 Z
| = A*Ad®x = AAd*x =S, eV ¢V dy=
Vo Vo 0
Z
= Sxz dy = Sy.:

0

There Sy, is the areaof the cross-sectiorof region Vo with the planexz. In passing
we comefrom Hermitian conjugate A* to complexconjugate A®, asfar asour wave
function is scalar.

Now we nd the momertum integral:

2727

Z
n o
| @n . Se~

lp=ji~ e V== % dx= == dy= S~

Vo 0
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Dividing by normalizing integral we obtain the average momertum value in the
selectedarea of integration:

Using the wavelength determination (1.10) we arrive to the expected result
hpi = py;

which show that the mean momertum value for the plane wave is equal to eigen-
value of momertum operator.

And what happensif the wave function is not their own? Let's try, for example,
to nd the angular momentumL of the sameplane wave:

CA=ji~[r£r]A= (xesi zex)p/A:

There is not a constart, z- and x-angular momertum componerts depends on
coordinates x and z correspondingly. Hence,the plane wave is not an eigenfunction
of angular momertum operator. The mean values calculated by integration in
volume Vg are

hLxi = Zpy; hLzi = Xopy;

where X,, z, are the coordinates of the certer of area Vp for x and for z. We
now seethat the result dependson the position of the areaVy with respect to the
referencepoint, which was not the casefor its own functions.

So, in the casewhen A in (1.8) is an eigenfunction for the operator F, the
number F can be taken out from the integral sign, and we have hF i = F. Mea-
suremert of action of the operator F in this state A is just give us the exact value
of F, as mertioned in the secondquote from [1]. If the A is not a proper func-
tion of F, the expression(1.8) still givesa numerical value hF i, which, however,
will depend on the choice of the integration area. Thus, expression (1.8) for the
gquantum{mechanical averageis more common relation betweentheory and expe-
riment than the equation for the eigervalues. Why is it not usedasa determinant
for this purpose?It corntains equation (1.7) themselvesasa special case. Of course,
the equation for eigervalueshas one distinct advantage: it represens an equation
that can be solvedto nd the form of the wave function®. But who said that be-
causeof this it should becomeelectedto the rank of postulates? In such matters
onesusually selectmore generalde nition from two equal.. .

1.3.1 Is the measurement carry out instan tly?

The fact that the eigervalueswhich is found from the eigervalue equation must
be a number (constant), not a function, may be a source of great shock for the

8 While the integral (1.8) requires WF A in Thal form.
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quantum theory. Here we are in one of the most critical "branching points" for
a quantum theory in which we can turn o® the cornvertional path. Howevwer, it
will be useful shacks since at the presern time under the signboard of quantum
theory there are beginning to settle some conceptswhich do not quite meet the
requiremerts of causality and objectivity. According to some physicists, blindly
believed in Copenhageninterpretation, material world around us is not exists
outside of our perception. Obsenation, say, producesa reality, and part of the

systemseparatedby a spacelike interval caninterfere with ead other. This isnot a
completelist of their " ndings". Part of the physicists who were closerto practice,
struggling with similar errors, trying to getrid of them, becausehey interfere with
the mergerquantum and relativistic theoriesand getting true quantum “eld theory.
Another part, who want novelty at any cost, smugglesthese views under the only
excusethat it is impossibleto deny such views logically. Now we can say: was
impossible...

The correlation (1.8) for quantum-mechanical averageis not lessfair and proven
in practice than the assertionfor the eigervaluesasfor obsened. Moreover, aswe
saw above, the eigervaluesthemseles are quantum-mechanical averages. There-
fore, the elewation of eigervalue equation to the rank of a postulate for connection
betweentheory and experimert can be consideredto a large extent arbitrary. A
similar sertence with quantum medanical mean would performing in the role of
such postulate. The more sothe equationsfor the eigernvaluesare assaiated with
certain circumstances,which testi es to their private character. Pay attention to
the following property of the equation

FA(t;r) = FA(t;r);  F = const (1.12)

No matter in which point r of spaceand in which time t the function A hasbeen
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taken, the action of the operator F is equivalert to multiplication by the same
number F, i.e. is constantly. At all points of space-time measuremen will give
the sameresult F. This implies an important conclusion:

2 Eigenvalueequation (1.11) can be regarded as an equation for nding sucha
“eld A, where the dynamic variable F is preservel and equal F .

Dynamic variables,savedin time, are calledintegrals of motion. Thus, the equation
for the eigervalues is equation, which implies in advance the existence of some
integral of motion®. General or not such demand is depends on itself dynamic
variable and the type of the system. For example,if operator is the energyoperator

E, then for isolated atom during those periods of time when he himself does not
radiate, the equation on energy eigervaluesis quite applicable. Guarantee of its
applicability is the law of consenation of energy The solution of the equation in
the generalform allows found not only stationary WF A, but the distribution of
actual values(eigervalues)of energyEp; too. There were plenty of speehesabout
importance of consenation laws in physics. But their role becomesinvaluable
if we will add that thanks to them there are eigervalue equations in quantum
theory, which somehav allow to link theory and obsenation! Howewver, by what
way transition of an atom from onestate to another occur, the eigervalue equation
can not answer. We can only calculate the probabilities of the transition from
obtained wave functions, and using the consenation law we can nd the energy of
electromagneticquanta, emitted or absorbed.

But then there is one more subtlety. It soturned out, that until preser in
interpreting of obsenableswith using equation for eigervaluestacitly assumedhat
the measuremenis carried out instantaneously. This is consisteri with the concept
of wave-particle dualism: all the value of the physical quartit y is concenrated in
the point particle, and in order to measure"a point", the time is not required.
Meanwhile this beliefis not logically proved and unique. We have already brought
an alternativ e view, which consistsin the fact that any observe changeof state of
object in microcosmnot only takesa certain amourt of space,but alsothe nite
(non-zero!) amourt of time. In particular, measuring device must interact with
an object, i.e. get away from it or give him a part of own dynamic variables. If
the quantum by which they exchangeis low-power, its wavelength and the period
are great. Exchange last for longer. If a quantum is high-energy its wavelength
and period are small, it takeslesstime. But still faster than one period of the
exdhange quantum interaction cannot occur, and this period is always nite. In
addition, it is only the lower limit. Actually, the transition from the initial state to
the nal state requiresa large number of suc periods. As shown in [5], pp. 226{
228, the characteristic of the irradiation time for a line of the hydrogen spectrum

9 Strictly speaking, the eigervalue equation can not contain time, and functions in it will

only depend on the spatial coordinates. However, if FA constantly throughout the space, then
relativistic consideration immediately said that it constantly in time too.
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(the so-calledrelaxation time ¢) is about 10 & seconds.The absolute value of this
time is small, but the relative expressedin periods of emitted light is enormous:
about 6 ¢10° cycles! For a time transition, which, by denition, is more than ¢,
the atom oscillates between states. In the caseof di®eren parity states dipole
moment of transition is formed, oscillated and thereby radiated electromagnetic
wave. The atom emits a train of more than 6 million oscillations before his energy
changein the e times! In addition, strictly speaking, frequency® of waves has
variations. As aresult, instead of a monochromatic wave we have a wave packet of
“nite spectral width. This is the real picture. Often, however, for the sake of the
particle-wave dualism the quantum of electromagneticirradiation is consideredas
a particle (photon). Being torn from the context of the above and basedonly with
minimal combinatorics of consenation of energyand momertum, the phenomenon
of photon exchange may appear as instantaneoust?). But aswe have just seen,it
is just an illusion, assaiated with the transienceof processesn the microcosmby
a macrosmpic time sale. Jump is an idealization, burdened conceptual ditcult y
of explaining the the natural line width. Actually lines obtained in the spectra
even in the absenceof disturbancesare not in nitely thin. Not one discrete value
of frequency is emitted, but some small range. The above mertioned "classic"
medanism with a gradual exponertial °ashing easily explains the broadening of
line, while a suddenjump conceptappealsto the primeval blurring of energyterms
for its justi cation.

As shown above, when we are dealing with eigervalues of physical quartities,
we are thus dealing with the consenation of thesevaluesin time. This, in turn,
this meansthat:

2 The time period whenF is conserval, is not equalto O (it canevenbein nite,
but in reality is nite due to perturbations);

2 The instantaneous and average values of the dynamic variable F coincide
and are equal to F.

If the measuredvalue for a long time keepsthe samevalue F, then how we can
have con dencethat we get it instantaneously? As well it can be arguedthat the
measuremei requires some nite time ¢, by which the target value is averaged:

L tyi2 777
hFi= = dt® AT FAd3x:

tj ¢=2

10 Any particle, even a photon, assaiated with the point concept in the subconsciousof many
sciertists. The point may be absorbed or emitted immediately, hence the unconscious belief
in instantaneous change of states follows. Meanwhile, the formalism of eigervalue equations
actually manageto do it without the concept of duration of time, limited only by order of the
stated Unfortunately , it is hard not to draw attention. ..
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It is easyto seethat if A is the eigenfunction of operator F, then their own value
F can be taken out from under the spaceintegral sign. Further, if we assume,
as suggestedabove, that eigenfunctionsset states in which the physical quantit y
is an integral of motion, then F can be taken out from under the sign of the
time integral. Then HFi = F will succeed. At the sametime, we note that this
measuremeh can not be called instantaneous, it lasts for the time ¢.

Mearnwhile eigervalue equation (1.11) will give the samevalue F of quartity

F. But in the end, for how much time it wasreceived? As you can see,the answer
depends on whether we believe in the point corpusclesand in the instantaneous
obsenation, i.e. from sud subjective thing asfaith. This is no exaggeration: the
conceptionof instantaneousobsenation by an oversight wasbrought into quantum
theory and lasted to the present day becauseof the faith. We have neither the
experimental nor the logical evidence!

It should be noted that the adoption of state about fundamertal "niteness of
duration of obsenation is followed by necessiy to introduce a distinction between
the observel and dynamical ("theoretical*) state of the object. The obsened
is determined by observing (measuring) and can not be local. It ewaluates the
co-ewlution of the object and the instrument in a particular space-timedomain
by a single measurednumber. But the dynamical state is the state of object
(‘eld), described by di®ererial equation at a point, i.e. is local becauseof the
requiremerts of the theory of relativit y. Until recertly it hasbeenusedin quantum
theory asa common conceptfor two roles. Now we seethat theseconceptsare not
identical, sothe statemerts of Heiserberg, Pauli and Dirac that the theory should
be built using only those valuesthat is obsened, it can not be taken literally .

1.3.2 The role of the observer

Currently, the role of obsener in quantum theory is extremely overpriced due
to the Copenhageninterpretation of quantum medanics. It is overpriced to such
an extent that the theory beginsto give idealism. You may judge it. According to
the quantum mechanical principle of superposition of states, if the wave functions
Ai, A, ..., A, describetheir own (relativeto a dynamic variable F) systemstates
in which system can be detected as a result of the measuremel, then the linear
combination

A= AL+ cAr+ i+ CA, (1.12)

is alsoa "physically acceptable"state of the system. In this case,the squaresof the
coexcients ¢ (i.e. non-negative numberscic; = jcj?) are equal to the probability
of nding the systemin the corresponding i-th conditOion. What elsecan | add?
As we know, the perception of fact always dependson its interpretation. It is easy
to seethe di®erencebetweenthe "pure" equation for the eigervalues

FA = FA (1.13)
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and equation
FA= ciFA + F Ay + 111 + cFA, =

= i F1AL + F2AL + 1t + chFhAn: (1.14)

In the rst case,when measuremeh conducted, just eigervalue F; is the obsened
value. In the caseof equation (1.14) with superposition of states A only one of Fy
is obsened, but their superposition doesnot! With probability jcgj? will be found
that the systemis in the "pure" state Ay and the measuredvalue F is exactly
equal to Fy. In other words, the right side of (1.14) can not be obtained by a
single measuremeh Only when enough a long series of measuremets (ideally
{ an in nitely long) will be done, then experimental "con rmation" of relation
(1.14) will emergé?.

So, in accordancewith the above mertioned Copenhageninterpretation it is
proposedto assumethat the wave function (1.12) also describes, as well as any
of the functions A;, a state of the system in a certain moment of time. This
should mean that when the systemis in a state A, it is at the sametime in state
A4, and in state Az, etc. Meanwhile, as we have found that only "numbered”
states Ay, A,, ..., A, are directly obsenable. State A is not related to these
category. Therefore,whenthe obsenation occurs, instant "collapse" of A happens
and replace it with one of the functions A;. This is called a signi cant word
reduction (of wave function). Why it had to be inverted? { you ask.

Perhaps from the fact that A satis es the equation (as any Ak) than formal
conclusionthat this superposition of states A = ciA; + ::: + c,A, can also be
consideredasa state hasbeenmade. Recallthat there wasa seart of the minimal,
the most simple set of operating principles. It wasnecessaryto createa simple and
reliable formalism. That "own value", corresponding to A, cannot be measuredin
oneact. But it is still was obtained from a seriesof measuremets. The fact that
the status of the A asthe solution of equation could be securedsimply by linearity
of quantum medanics equations for the wave functions, was not appreciated.
Moreover, it was turned in the opposite direction. The linearity of equations
is a fundamental factor and generatesa superposition, but rather to provide a
superposition operator should be required to be linear.

But what's doneis done. Now, to work within the establishedinterpretation
the universework had to passto the obsener. The systemis consideredto be
located in the strange state A of (1.12), until the measurementis not over. Thus,
it turns out that the systemcan not evolvewithout the obsener. E. Sdrodinger
tried to protest againstthis state of a®airsby meansof a thought experiment, now
known as "Schrodinger's cat".

) 1t should be noted that here we assumecertain idealization connected with the fact that
after each measuremern system returns to its original state, or that the measuremen does not
change the state of system. In the caseof obsenations of a single atom it is not so. However, if
we obserwe an ensenble, it can take place within a certain accuracy.
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Imagine a box with an apparatus which operates as follows. A radiation de-
tector is intended for registering nuclei decay of a radioactive substance. Type
of substance(half-life) and its amount are selectedin such a way that individual
decays follow extremely rarely throughout the experimert, for example, one per
every half hour on average Meanwhile the radioactive deca is a random process,
so someof the coresdecay before "schedules", somebreak later. There is always
a chance that decay will happen before (as well as the fact that it would hap-
pen later). Detector of the particles emitted from nuclei of material, actuatesthe
mechanism, smashingan ampoule of hydrocyanic acid'?.

Now imagine that the experimert

has began. The lethal device is

switched o®, the ampoule is intact. A

live cat is placed in the box, where-

upon the cover is closed. At someini-

tial instant tg the device is switched

on. Discussthe following processin

terms of the Copenhageninterpreta-

tion. In this context the states that

the cat can be one of two states {

alive and dead. So far, until the ob-

sener will open the cover of the box,

the state of the cat should be charac-

terized by the vector "alive + dead". What doesit mean? Founders of quantum

medanics did not want to understand Schrodinger's argumerts. In that time an-

other theoretical "toy" was promoted and obviousnesswas not necessary Say, it

doesnot matter what there was before the obsenation. The cover opensand the

instantaneousreduction of the cat wave function happensfrom the "in termediate”

state in one of the states"alive" or "dead". Here is sud fairy-tale holds almost a
certury. ..

Let will show that it has nothing to do with the truth. To do this, we will im-
prove the described experiment a little. Let the boxes be many, and the "guinea
pigs" are not cats but inanimate counters of particles emitted during the radioac-
tive decay of a nuclei’®. All courters are exactly the same,eat has a set, say, of
million of their eigenstates,which may be called as 000000,000001,000002,.. .,
999998,999999. Let the state title be the counted number of nuclei decays, i.e.
number in the counter panel. The radioactive compounds are the same, so that
average court rate of counters is the camein all boxes. At the beginning of the
experiment all the counters resetin 0. Run them all at once, but open the cover

12) The poisoning substance.

13) Firstly , sorry for the innocert animals; secondly, Schrodinger usethis argument only just to
producethe greatest possibleimpression and thus emphasizeabsurdity of discussedinterpretation.
It is obvious that anything can be usedinstead of cats and it can has not two, but a much larger
number of possible states.
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(to obsene) will be at di®ereri times. If we hold the Copenhagen'sinterpretation,
the counter in every box is in superposition of states, i.e. described by "vector"
000000+ 000001+ ...+ 999999%beforethe lid is open. However it is obvious that
the later we openthe lid of the j-th box, the more likely we will nd there a larger
reading of courter.

On average, registered states of courters will repeat the law of radioactive
decay of the matter cortained in the devices. It meansthat con dent state (one of
eigenstates)'ns :::ng" of counter occur not whenthe box cover is opened(obsener
interferes), but when the particle emitted by the nucleus and the device counted
it. The obsener is not to blame. If this were not so, i.e. if assumingthat the core
only disintegrateswhen you openthe box, it is possibleto cometo a full absurdity.
This can especially be when the box is not openfor long time, then at the momernt
of opening instant bursts of radioactivity happen, as that the number of cores
should be "irradiated”. And what about the substanceswhich disintegrated in the
Earth's crust long beforethe human obsener?!

In general, indispensablepresenceof the obsener during the obsenation is a
bad idea. It is much easierand more reasonableto admit that the wave function
(1.12) doesnot describe the obsened state of the systemand entered into theory
thanks to linearity of equations. That, at least, allows you to return objectivity
to theory.

1.3.3 Realit y of observables

Another sourceof changesfor the existing theory is in the mathematical nature
of the obsenables. This meanswhat numbers should expressthe results of the
measuremets. For the mathematical apparatusbuilt on usingof complexfunctions
the questionis not idle. Although it is not xed by postulate, but now quantum
theory holdsthe view, accordingto which the obsenablesmust be expressedy real
numbers. For example, if we extendedthe secondquote from [1] (seesection 1.3),
we can read as follows:

". .. The secondpostulate said that the result of accurate measuremenof dy-
namicvariable, whichis characterizedby the operatar F, canbe obtainedassome
of the eigenvalued$- only. From this it follows that eigenvalue®f all operatas
chaacterizingphysicalvariablesare real numbers".

Um, yeah-ah... Somehav it is not obvious that the idea of the secondsertence
follows from what has beensaid before. Perhapsthe quoted author had in mind
that scalesof varied devicesthat can be found in laboratories, graduated in real
numbers, soto be measuredwith sud good instruments any value must be real?
More intelligible discussionof this issuecan be found in P. Dirac [2], p. 46:

"We measuresome dynamic variable from experiment. It is obviousthat the
result of this experiencewill always be a real number, so we shouldexpect that
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any dynamicvariable that we can measure shouldbe the real dynamicvariable.

It would seemthat measuremenbf complexdynamicvariable could be madeby

measuringsepaately her real and pure imaginay parts. However, such action

includestwo measurement®r two experiments, holding of which is possiblein

classicalmechanicsand is not always possiblein the quantum, as both exper-

iments can interfere with each other. Generallyspeaking, we can not assume
that the two measurementan be conductedpreciselyand at the sametime,

and if they hold almost immediatelyone after the other, the "rst usuallyleads
to a perturbation of the systemstatusandto uncertaint that a®ectsthe second
measurement.Therefae, we must assumethat the dynamicvariables,that we

can measureare real, and the condition of their reality formulatedin x 8".

It turns out that the obsenable should be real im-

posedby the fact that we basically can not measure
syndironously two physical quartities which describe
the object at a certain momert of time. A referenceto

complex magnitude is necessaryas it is known, two

real numbers. But still such reasoning leaves some
dissatisfaction. From the fact that it is impossible
to measurethe complex eigervalue, concludesabout

reality of measuredvalues. We are trying to specify

nature, how it must be built, becauseit is necessary
for the comfort of our theory! Everything elsewould

be nothing if it doesnot leave its mark on the equa-
tion. The fact that the equationsin the theory sere
not only to cortinually ched their conformity with

experience. Equation, if it describesobjective reality,

is independert of us and our problems. We also need
it in order to understand the dynamics of a quantum

object. Arti cial limiting to the set of eigervaluesby

alonereal may lead to the fact that we losea part of

the solutions, which take placein reality, and closesomepossiblepath to discover.

Why not admit that the measuredvalue is only part of the (real or imaginary)

complex dynamic variable?

Complex dynamical variables in physics are not such a rarity. Take at least a
3-phasealternating current. Measuremen of e®ectiwe voltagesUa, Ug, Uc on the
busesA, B, C doesnot give us the full information on its possibilities even if we
further know that the voltagesare sinusoidal and frequencyis equal to 50 Hz. Of
course,the voltage measuredby the voltmeter is real number, but asit turns out,
this measurement is incomplete If we want to connectthe 3-phasemotor, we will
not know in which direction it will rotate. To do it right, you needto know the
relative phaseof the voltage on the busesA, B, C. Thus, the voltage in 3-phase
circuit is characterized not only by the magnitude but also by the phase,allowing

Paul Adrien Moris Dirac
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it to enter its complex represeration 4. If now we go to the quantum theory,
and we consider that its methods (including the eigervalue equation) were not
concludedin due time with mathematical inevitabilit y, but were found by trial-
and-error method, then after that volitional decisionto leave a microcosmwithout
complex dynamical variables can well be a top of frivolity.

1.4 Incompleteness of QFT

Most physicists working in the eld of elemenary particles are corvinced that
further progressof the theory will be dueto the correct choice betweenthe existing
models (Standard, strings, supergravity, etc.) or through the creation of the new
"correct” gaugemodel. The question of the credibility of the QFT, underlying all
of these models is not considered. Many sciertists believe that if some methods
permit achieve the relative accuracyof 2:3¢10' 7 in the calculation of the anomalous
magnetic momert of the electron, then it is proof of its total infallibilit y.

Let will prove that quantum eld theory
is not a complete theoretical system. It is
known that QFT is declared as a relativis-
tic theory on the basis that it is basel on
the laws of special relativit y theory (SRT).
But it is wishful thinking. That is nearly so,
the Lorentz transformation and other SRT
attributes actually used. One important,
if not say principal, feature of QFT is in
its contradiction with the relativity princi-
ple. More precisely one of the conclusions
of SRT completelyignoredin QFT. Consider
it.

Relativit y principle of SRT (A. Poincare,
1895) states that all physical phenomena
dewelop in the same way at equal initial
conditions in all inertial referencesystems
(IRS) [4], p. 493. Formally this meansthat
the equationsdescribingthesephenomenain
di®erert IRS should be the sameapart from the notation. As we know, the particle
which has momertum p 6 0 in certain referenceframe (and hencevelocity v 6 0)
is comparedin quantum theory to de Broglie wave with length

Figure 1.2: Particle and de Broglie
wave.

14) Which becomesespecially actual in a circuit containing reactive elemerts { inductances and
capacitances.
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This duality of objects of the microworld is called wave-grticle duality and is oneof
the postulates of quantum theory. In mathematics the word "compared" normally
doesnot obligeto nothing "material”, but in physicsin this caseit must meanthat
there is something which is described by wave equation. It doesnot matter what
is the nature of this wave { acoustic, electromagnetic or "density of probabilit y"
{ there is a wave phenomenon, and it must be described by a wave equation.
According to the principle of relativit y, this phenomenon(and the corresponding
equation up to notation) should look the samein all of IRS. Howewer, if we try
to go to the intrinsic IRS of particle!®, then we will encourter a cortradiction.
Sincethe momertum is 0, wavelength, becomesn nite. De Broglie wave doesnot
exist. For this reasonthe modern quantum theory (including QFT) is not studying
particles in intrinsic frame of referenceon the basis of wave equations. Instead
arti cial models apply, such asthe wave packets (the Fourier decomposition), dot
particles, strings, etc. This deviation from the principle of relativit y is a testamert
to its inner incompletenessand, as a result, inconsistency In a strictly coheren
theory direct consequencesf the postulates must not be absen for unexcused.

1.5 Zitterb ewegung, or electron beside himself

Consider a striking example of the problem posedby non-usageof the principle
of relativit y in the modern quantum theory. According to current concepts,the
electron is a true elementary (fundamental) particle. It is the point-lik e in QFT.
Thus, all its "internal" and "external" physical characteristics (charge, mass,an-
gular momertum, momertum, energy etc.) can be consideredconcerrated in the
moving point { in itself. When momertum is non-zeroit is mapped to the de
Broglie wave, which allows us to calculate the probability of nding it in a point
in spaceor to measuresomeof its above-mertioned characteristics.

The wave function describes the so-called "cloud of probability”, density of
which is proportional to the probability of nding an electron at this point. Con-
ception of the probability cloud is particularly evidert in the atom whereit appears
for usin a great many options. Not to considerthe energylevelsin an atom, and
ead of them corresponding to as many di®eren forms of the clouds, asthe multi-
plicity of degeneracyof angular momertum level numbersis (see.,e.g., Fig. 1.3).
As we have seenin the section 1.3, WF has been actively involved in getting
obsened values of dynamic variables. The same can be said about a cloud of
probability, which thus becomesvery useful for practice.

It turns out that taking into accourt only that probability clouds,which created
by de Broglie wave'®), we cannot exactly explain the meaning of some of the

15) A referencesystem assaiated with the center of massof the particle (with respect to which
the particle doesnot move).

18) In the atom the electron wave can also be regarded as de Broglie wave, becausethere it is
related to the momentum of electron motion.
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Figure 1.3: Typesof the electron shell of a hydrogen atom

obsened valueseven if we take into accourt not only of electronsspins but also of
nuclei one. When experimental technology hasreaded a high enoughlevel, it was
found that someenergyterms are shifted relative to their theoretical values. Thus,
ahydrogenatom level 2S,-, located above the level of 2P;-, on 4:14¢10 © eV, which
corresponds to the frequency di®erenceof 1000MHz (C.E. Lamb, R. Retherford,
1947). At the sametime, according to even the relativistic quantum medanics,
using the Dirac equation for the electron, these levels must be the sameas the
degeneate. What is the reason?

The Lamb's shift have been explained using the
phenomenon,which was suggestedoy E. Scrodinger
in 19300n the baseof analysis of Dirac equation. He
was interestedin how someoperator must depend on
time. In quantum medanics the time derivative of
any operator F is expressedthrough its commutator
with the Hamiltonian { the total energy operator:

dF @ i .4 4
E_6+:[|4,I‘—“].

Erwin Schrodinger
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Using Dirac Hamiltonian of a free electron!”)

X3
H=m?®+c &P

k=1

E. Sdcrodinger found that coordinate can be represerted as the sum of three
terms: the initial position xx(0), displacemen due to the momertum p, and some
oscillating appendix having small amplitude [6], p. 431{433:

2 ~h I o 2iH t=~
X () = X (0) + #H i~c ®(0) | % eT: (1.15)

The rst two terms were expected, but the third
turned out to be a surprise. Its frequencyis 2 times
higher than the frequency corresponding to the total
energy of the electron, and the amplitude equal to
~=(2m¢C), i.e. half of the Compton wavelength. Inter-
esting fact that the appendix, in general,is complex.
Despiterthis, it felt quite physial, and additional mo-
tion of an electron, leading to its occurrence,is called
Zitterbeweyung'®. If we assumethat the electronis a
point particle, it turns out that in addition to the nor-
mal movemert, accompaniedby de Broglie probability wave, electron additionally
"trem bles". But what may causesuc trembling?

Nearly two decadeslater Zitterb ewegungphenomenonwas mertioned in con-
nection with the explanation of Lamb's shift (H. Bethe). It wasjust in time by the
way, becausedue to "jitter" of electron it turned out that the e®ective potential
of its interaction with the nucleusmust be a little "growth" that should lead to a
shift of the atomic level upwards. Especially such displacemen should be subject
to the terms, the formation of which take place when the electron is closeto the
nucleus. As it is known, these are terms with the orbital quantum number of
| = 0 with no certrifugal e®ect. That is why the level of 2S,-, is above the level
of 2P,-,. We have come up with an explanation for the trembling phenomenon
itself: it supposedly arisesfrom the interaction of an electron with a very tran-
sitory never ceasing®uctuations of the electromagnetic, electron-positron, and so
on “elds?. Theseideasformed the basis of quantum electrodynamics (QED) {
the rst embodiment of the quantum “eld theory. All additivesin spectra arising
from vacuum °uctuations, cameto be called radiative corrections.

%) Here ®y, ..., ®; are matrices 4 £ 4, P« is operator of the momentum componert of k-th
coordinate.

18)nJitter”  (germ.)
19) So-called vacuum quantum °uctuations.
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Let usreturn to the analysisof the
situation from the point of view of the
principle of relativity. The Zitterb e-
wegung phenomenonleadsto the for-
mation of another cloud of probability
of the electron, such asthat shown in
Fig. 1.4 left. A formal application of
the principle of relativit y allows us to
specify an intrinsic systemof reference
for this cloud, coincidedwith its certer
of mass. But then there is the ques- Figure 1.4: Electron "trembling" in intrinsic
tion: what is meart by the cloud of referenceframe.
probability? If introduced systemis a
self-referencesystem of the electronitself, it must always be in her origin (certer),
becausea point particle cannot "come out of themselhes", and at the sametime
bein the center, and in the points 1, 2, 3, ... (Fig. 1.4right)! The situation canbe
saved if the trembling of the electron is non-inertial motion. Here we are, nally,
encourter the physical impossibility of applying the relativit y principle: we cannot
ernter the inertial referencesystem for an electron! So the introduced IRS refers
only to the Zitterb ewegungprobability cloud.

It would seemnow all points are clear. However, rememnber that in corvertional
interpretation of experiments with quantum interferenceand di®raction physicists
usually arguethat the particle behavesasif it really is simultaneously at all points
of its wave (probability cloud). It forms a wave eld required for the obsened
interferencepattern [5], p. 463{468. If this property of de Broglie wave (the electron
is in all points simultaneously) carry to Zitterb ewegungprobability cloud, then we
go badk to the cortradiction described above ("come out the electron from itself").
The roots of the discrepancieshave to be found in prevailing assumptionthat the
obsenable valuesis formed instantaneously, and in a closely related concepts of
object asa point in a microcosm.

One more thing. The following chapters will shov that under the new theory
aswell asde Broglie wave, as Zitterb ewegungcloud of probability obtained in full
conformity with the principle of relativity as the solutions of the same dynamic
equations in di®erert inertial frames. This will allow us to nally overcomethe
dixculties described in this sectionand in section 1.4.

1.6 Particles or waves?

One of the cornerstoneprinciples of modern quantum theory is wave-particle
duality. Its essencdies with the fact that all objects of the microworld have a dual
nature. They can showv themselwes both as discrete particles, and as contin uous
waves. Moreover betweenthesetwo di®ereri (if not to say the opposite) roles the
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Lui de Broglie
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following division of functions exists: the total
amount of all dynamical variables’® contained en-
tirely in a discrete particle, and the wave determines
the probability with which that particle is in one or
another point of space. The emergenceof suc con-
ceptis quite natural, if the historical aspect of the for-
mation of quantum medanics is taken into accourt.
By the beginning of XX certury non-relativistic clas-
sical medanics has long beencompleted. Mechanics
of a material point was brought to perfection, i.e.
of ideal object having the dynamic characteristics of
"the real" material body, but dimensions of which
can be ignored. And the rst thing facedin the ex-
periments with individual particles of the microcosm
is the fact that they are very small, i.e. behave as

discrete. In many casesthey may well be consideredpoint-lik e. Application of
laws of mechanics of material point seemednatural for physicists.

Max Born

Their reaction was very di®erert when it wasdis-
coveredthat the microparticles are capableof produc-
ing e®ectswnhich are consideredpeculiar to the waves.
At rst, about the wave nature of the substancepar-
ticles spoke Louis de Broglie (1923). He was inspired
by A. Einstein's ideaof corpuscularproperties of light
(photons)?Y, which leadsto the duality of its nature
and giving thus reasonto think the sameabout the
rest of matter. The idea of de Broglie was fruitful,
it let E. Schrodinger to create his wave mechanics
(1926), which adequatelydescribesthe behavior of an
electron in an atom. Thanks to it last doubts about
the wave nature of the microworld objects have dis-
appeared, but the acutenessof the problem on the
interpretation of the wave function has readed its
zenith. For the rst time physicists are faced with
objects that were supposedto have exactly the oppo-

site properties { to be both discrete (particles) and cortinuous (waves). Common
sensebasedon all previous experiencedid not allow physicists to agreewith that.
Howewer, the question necessaryhad to be solved, and, asit seemedbbvious, not in
favor of any oneversion. Then it wasformulated in such way, that it wasrequired
to nd a method to combine the properties of discrete and contin uous within the
sameconcept. In the same 1926 M. Born proposed statistical interpretation of

20) Energies, momentum, angular momentum, etc.

21) strictly speaking, A. Einstein gave more modern concrete and practical view to the old
concepts of light as a stream of corpuscles,supported at the time still by I. Newton.
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the wave function, thereby maximizing smoothing "sharp edges"and putting an
endto the formulation of the wave-particle duality. The experiments with electron
di®raction on crystals (1927, K. Davisson, L. Germer and George.P. Thomson)
werethe nal con rmation of wave properties of microparticles. Nobody elsedoubt
in the adequacyof their wave nature. ..

A lot of time has passedsince then. Wave-particle duality is rmly stuck in
textb ooks and, as a result, in the minds of physicists. Mathematical apparatus of
modern quantum theory is, above all, the so-calledtheory of quantized elds, for
which the particle conceptis quite conveniert. Although in fairness,we note that
it works in the dual space: variables are the energy and momertum, rather than
the time and coordinates. We are talking about quanta?? of the corresponding
“elds, and here the desire for clarity slips us a shape from everyday experience,
i.e. the image of the particle. And we imagine it for ourself as discrete in space.
But should it be coming from somewhere?

It is surprising, but there are no theoretical considerations or experimental
facts from which one could unambiguously logically deduce "corpuscularity" of
electron or any other obsenable object of microcosm. All thanks to what has
formed our impressionabout discretenessaand sometimesabout pointness,enclosed
in one simple plane, on the faceof it, fact of the extremely small spatial extent of
individual e®ectscausedby them?3). Mearwhile, this would seeman obvious fact
cannot be regarded as indisputable evidenceof true, i.e. principal, discreteness.
Continuous eld can create equal e®ect,if two conditions are met: 1) the density
of dynamic variablesis larger in those points wherethe eld amplitude is greater;
2) "eld amplitude falls sharply with distance from someselectedcerter of “eld.

For de niteness, considerthe following example. Let the spherically symmetric
wave function be _

a — %élHeicm;

where ¢y is dimensional factor?®), rg is some characteristic scalealong the radius
r. The spacedependenceof the “eld of the microcosmas a negative exponert (if
not accurate, then for the most part) is very common for square-irtegrable elds.
Presented time dependenceof 2 is no less characteristic (such "elds are called
stationary). Thus our exampleis not quite too abstract, it is taken"from the very
heart" of the quantum world. We calculate the energyof eld 2 inside the sphere
with arbitrary radius r:

727 z
E(r) = a"ga @3x0= 4y, r
ro%r 0
h
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= Yjcoj*~! rgi rg+ 2rgr+ 2rore e '

22) That is about portions.
%) Aside from length of trace, which can reach large value due to the rapid movemert
24) Dimension of jcoj? is inverseto volume dimension.
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Figure 1.5: Energy in the "eld @ = el ! ti '=To

It is obvious that in order to get the full energyof the eld, i.e. the energyof eld
a8 in the whole space,you must goto the limit of E(r) atr! 1 . In this casewe
get

E=E(1)= Ycoj®~! rd:

Now we can nd a part of the total energyof the eld 2, enclosedwithin a sphere
with radius r. It is given by the ratio

" V| TR Pid
EM oy 42 D owa 17 g2
E lo lo

In Fig. 1.5 this relationship is shown by the dashedline. The rst striking thing

is the fact that the energyof eld is distributed radially very unevenly. There is

a strong conceriration toward its certer. So, if within the scope of radius r = rg

holds about 32:3% of whole energy of eld, then at r = 3rg its share has reached
93:8%, and if r = 5rg comesto 99:7%. The portion of energythat remains outside
the sphereof radius 10rg, is negligible { lessthan 0:00005%! If we consider that

many other dynamic variablesin the eld 2 have similar distribution, it becomes
clear that by physical manifestation such continuous eld may be easily confused
with a discrete object. Especially if we take into accourt that the parameterrg in

the eld 2 isfree. Setting its value in half-angstrom, we get all the above estimates
for the scaleof the order of atomic dimensions. At a value of rg down to order of
femtometer we get to the atomic nucleus scale, etc. Therefore we seethat if we
talk about "tri°’e" of physically perceptible sizes,it is possibleto do this without

the conceptof corpuscles,using corntinuous elds only.
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This brings us to a very important point. One might ask why we are so eager
to get rid of the corpuscular aspect in theory. The fact is that we would like to
seenot just "a philosophical” unity and justi cation by introducing a postulate,
reconciling opposites,but full formal unity of description of objectsto any reference
systems,including intrinsic. As we saw in section 1.4, consistert application of the
principle of relativit y requiresthat the object should be described in its own IRS
by the wave equatior®®. Consequetly, the question "particle or a wave?" must
still be resolved in favor of any one version. It turns out that the corpuscularity
is simply super°uous.

One morething. In wave medanics, which operateswith continuous functions,
the solutions for dynamic variablescanturn out discrete (quantized). For example,
for energy levels of atoms, or for angular momertum projections, etc. Thus, the
continuity of the object being studied as a eld is capable of generating discrete
obsenable. Is it worth while hold conception of corpuscles,if that require to ap-
ply somearti cial methods of renormalization for divergencesin this approat?!
In addition, the extreme manifestation of discretenessis a spot which deprives
the internal structure and dynamics of the objects, sothat all the properties nec-
essaryto "hang up" from the outside and not getting in the form of solutions
of equations for "internal" degreesof freedom. The theory is doomed to remain
phenomenologicaluntil the end of world if it postulate pointness of fundamenal
particles.

1.7 Where mass may be found?

At presert time, when theselines are being written, it hasalready extinguished
the excitemert around seart for the Higgs boson taken on running in Septenber
2008 accelerator LHC (Large Hadron Collider) at the International Center for
Nuclear Researtt CERN in Switzerland. The seard for this hypothetical particle
beganon accelerator LEP (Large Electron Positron [Ring]), precedingthe LHC,
and Tevatron accelerator in Batavia (USA). In 2012{2015 these seartes were
crowned success.Spinlessparticle with a massof 125 GeV2®) was found on LHC.
What is a Higgs boson, why his seart has a priority for experimenters of our
time?

The reasonthat an important part of the Standard Model is uni cation of elec-
tromagnetic and weak interactions with the calibration approad. Using transfor-
mation group SU(2) and U(1), S. Weinberg in 1967 and A. Salamin 1968 found
that four vector?”) “elds W;", Wi , WP and B: were enoughto jointly describe

25) Necessity of wave description of microworld objects beyond doubt.

26) In physicsof elemertary particles is convertional to expressa masswith energy units divided
by the squareof the speedof light c2. Often, for the sake of brevity c? is omitted. For information:
1 Gevzg = 1:6021892¢10 ° erg=¢ = 1:782676¢10' * g.

27) That is with spin 1. Field B: acting on behalf of group U(1) and "eld W represert group
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the weak force and electromagnetism. As noted later, the Lagrangian while deliv-
ering a "pure" symmetry SU(2) £ U(1), but { alas! { has one essetial °aw: in
it there are no so-calledmassterms for fermions and imposedgauge elds?®. Yet
another D.D. Ilvanenko, I.E. Tamm (1934) and H. Yukawa (1935) have shown that
short-range forcesmust be carried by particles with a nonzeto mass. For the elec-
tromagnetic eld with its in nite radius of action is sutcient masslessphotons,
but the weak interaction is solely short-range. Its typical range is even smaller
than that of the strong nuclear interactions®® and has the order of magnitude
2 ¢10 18 cm. Becausewithin the calibration mechanism the only known way to
provide a short-rangeis endawing the particle-carrier by nite mass,then it follows
that at least one of thesevector bosonshasto have a mass. But then sharply the
guestion aroseas to where to take the massterm in the Lagrangian for him.

The solution wasfound to break the symmetry of the original theory. Examples
like a spontaneous breaking of symmetry has long been known in physics (e.g. it
occursin ferromagnetic materials). Their essencés that the symmetry of the state
with the minimum enemgy (to which the systemalways striveswith "every b er") is
lower than the symmetry of the equations, describing the dynamics of the system
in general. In other words, the Lagrangian of real systemin the ground state with
broken symmetry, will be not sosymmetric asthe original. And there is hope that
in Lagrangian the new terms will appear, the form of which will interpret them
as massmembers of gaugebosons. Not those of the original "elds W.", Wi , WP,
B:, but "the new", into which the initial onestransformed as a result of broken
symmetry:

wWiowh w2 B i W wi e z0 AL

And soit happened. New observel eld got their massterms, and only the mass
of electromagnetic eld A: remains zero.

What exactly manneris formally described the mentioned violation of symme-
try? Intuitiv ely, just like that, the desiredresult cannot be achieved without the
introduction of something new in the theory. This new was a so called the Higgs

“eld q
i A
= B

which interact with particles in the electroweektheory. Its potential is speci cally
chosensothat the state of lowest energy doesnot exist in the absenceof the eld

SU(2).
28) To the fermion "eld A they should have the characteristic form mAA in the Lagrangian,
and to gaugebosons{ 1=2m?B' B: and 1=2m?W" W: .

29) In virtue of which in the Tst theory of the weak interaction (for example, in the theory
of E. Fermi) all based on the assumption, that this interaction is contact, i.e. all involved in it
particles intersect at one point in space-time.
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(at AL = A, = 0), but at some

oMot
Ajac = p—é . ; = consté O;
the secondcomponert has a certain nite vacuum averagevalue. As an example

of such potential can sene the
V(A) = 12A" A+ (A" A)Z:

If you write a new Lagrangian of electroweak theory in the neighborhood of Ayac

in the form of expansionsin powers of (Ai Avac), then there are new terms with

the species characteristic, which are interpreted as massiwe. In particular, for

all the componerts of the Higgs eld, with exception of one, the massterms are
equal to 0. In this case,the theory only notes niteness of the remained mass,
without giving its numerical value my. As for the vector bosonsthat carry the

electroweak force, some extent picture is reversed for them: three of the four

particles are massive. According to the presernt experimental data, the masses
of the gauge“elds of electroweak theory are the following: mys = 80 GeV=c,

mz = 91 GeV=c2, m- = 0.

Thus, the responsibility for the existenceof a massof particles is the Standard
Model imposeson interaction. The ideais not new. It was expressedby E. Mach
in the XIX certury, whoseworks rst has some e®ecton views of A. Einstein.
According to Mach's principle (1896) the inert properties of the body is deter-
mined by its interaction with all the other bodiesin the Universe. Beyond this
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philosophical statemert E. Max did not go and did the right thing. What was
known to mankind at the time about matter and the forces?!

In connection with the Higgs medanism the result from modern condensed
matter physicsis often showvn as example of analogy To adequately describe the
properties of crystals free (within the crystal) electron must be an attribute to the
so-calledreduced mass which is usually greaterthan that of truly free electron. At
the sametime explain the fact that the electron interacts with the crystal lattice,
which "slows it down", thus reducing its responseto an external action, which
createsthe impression of the increasedmass. Meanwhile, this example cannot be
consideredsuccessfulfor a number of reasons.

Firstly, the electron motion in the vicinity of an arbitrary nucleus of grating
more or lessindependert of other nuclei (it is almost identical to movemert in
the corresponding atom), but in between nodes its energy (so called the Fermi
energy) by nature is a kinetic. And just when the relative share of the Fermi
energyincreaseqand, respectively, the relative fraction of the energyof interaction
decreaseg the reduced electron mass increases. It turns exactly the opposite,
i.e. that the reduced massis greater when more kinetic energy or, the same as
the square of momentum This resonateswell with the fact that inertia { has
a reluctance to change momertum, not energy Therefore, it would probably be
logical to look for the roots of inertia not in the interaction energy but in the
momertum. The Lagrangian can be separatedinto two parts, appropriate kinetic
and potential energies:

La=(EAT (A + Ling

where " is 4-momertum operator. To obtain (or at least change) masstheoreti-
cally it is logical to pay attention not to the secondterm in L 4, but to the rst?
Hidden details can be found not in the interaction, but in the momertum. ..

Secondly the picture in the described example of the solid-state physics is
too primitiv e, in general, e®e&tive masstensor hasto be entered. Reducedmass,
in principle, is anisotropic, and may even be negative: for the direction of the
applied external "eld E is impossibleto say in advance,which way will accelerate
the electron. It is clearthat all of theseare costfor the simpli ed phenomenological
description of a complexsystem. But another interesting questionoccursafter suc
examples:whetherit is possiblethat interaction, which always hasa direction, may
explain such a dynamic isotropic characteristics as mass?

As we shall seelater, the quantum theory of elds of motion explains the
formation of a massterm asa result of a specialtype of additive to the momertum,
which may occur in certain "elds. The “elds in which this additive behaves as
massiwe; eld, in which momertum is "pure" and doesnot have the massesand
movesat the speedof light.
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1.8 Theory destined to replace QFT

Probably it would be correctly to give a brief description of the most important
points and results of the new theory beforethe start of its detailed presenation.
The reader will know in advance, why their attention will be mobilized and will
be able to immediately decide for themselhes the question of whether or do not
spend time.

So, the author's name of the new theory is as follows: the quantum theory of
“elds of motion (QTFM) . It is originally arelativistic theory, the mathematical ap-
paratus of which is built in pseudo-Euclideard-dimensionalspace-time(Mink owski
space). Investigation of the medanism of interaction is not its task. The meca-
nisms is used as known facts to study of the objects which we called elemenary
particles. In this view QTFM doesnot describe gravity, at least not through the
curved space,asit is donein generaltheory of relativity. This, howewver, does not
mean that this theory will shy away from questions about the world unity. On
the contrary, it provides an opportunity to achieve this unity. Its methods do not
repeat the path that led to create the Standard Model or other theories that are
basedon modern quantum eld theory. It must replace QFT in the part whereit
comesfrom internal "structure" of elemenary particles. Therefore, after its adop-
tion creation of the theory of elemenary particles must begin anew. Of course,all
the accunulated experimental results remain valid, but they must be understood
in a new way, from the standpoint of the new theory. Concerning interpretation
of di®eren typesof interactions, then this questionis solved in the following way:
QTFM is "friends" with 5-dimensional Kaluza { Klein theory, in which electro-
magnetismand gravity can be describedin a uni ed manner as manifestations of a
space-timecurvature. The fundamenal nature of thesetwo forcesin QTFM is not
questioned, but that cannot be said about interactions of "small radius” { weak
and strong. One important result of the QTFM is obtaining of their dependence
on the distance, but an even more important result is the refusalto considerthem
asthe fundamental. Thus, in QTFM the fundamenrtal interactions are only those
that are expressedin terms of derivatives of the metric tensor. Moreover, in the
mathematical apparatus of QTFM it is used not as a geometric but the usual
approach for expressinginteractions.

As you know, now the theory of relativity and quantum medanics has not
managedto combine in a consistent manner. According to the author, the rea-
son of the dixcult y lies not in the special theory of relativity (SRT), but in some
errors relating to the quantum theory. Someof them (for example, the opportu-
nity to obsene the instantaneous state change and the consequen instantaneous
obsenation, basically the real character of the obsenables and etc.) have been
critically reviewed in this chapter. Their correction are allowed to enter to a new
level of perception of the quantum laws. If earlier it wasnot possibleto infer them
from simpler principles and the theory was build from postulates which worked
without any explanation, then now it is possibleto explain them. For example,
stochasticity, i.e. probability, random behavior of quantum systemsmay be con-
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sidered. In QTFM particles are replaced with new objects such as cortinuous
“elds of movemert, which, asit turns out in fact, often have the oscillator behav-
ior (usually solutions of the wave equations are oscillations and waves). The time
during which the obsenable change of state of system motion take place (i.e. the
systemewlution from the initial state to the nal), in any casenot lessthan period
2Y~=E; of exchangequantum, and usually more than it for millions of times (see.
Section 1.3.1). If we stick to the view that this changetakesplace in a momert
(the momernt t), you'll have the whole ewolution of the system during the t; | t;
compareto an instant transfer. Henceit is not surprising that the object "at the
time t" will represen for obseners as "spread" in spacewith someprobability.

At this stage two large componerts can be distinguished in QTFM: mathe-
matical formalism and the vacuum theory. The rst is a relativistic approac for
one-commnert (scalar) wave functions. Will list its basic features and/or results
that are new for comparedwith onesavailable in QFT:

1. Description of objects in intrinsic frame of referenae in the corventional way,
i.e. by wave functions.

2. Description of elds with any spin using the scalar wave function.
3. Universal dynamic equation. Absenceof necessiy theories of uni cation.

4. De Broglie wave as a result of application of the principle of relativit y to the
solutions of the dynamics equation.

5. No needfor renormalization.
6. The theory of formation of massterms.

Commert brie°y on the above list. Currently, approac of the quantum theory to
the description of the moving and resting particles are substartially di®ereri. The
‘rst is assaiated with the de Broglie wave (see. Section 1.4), the secondis the
wave padkets (the Fourier decomposition), or any type of model as point, string,
etc. QTFM corrects this de ciency, describing objects in all IRS by a formally
uni ed way { through corntinuous elds of movement then wave functions can be
regarded as mathematical imagesof the objects.

Furthermore, the eld of motion @ canhave "structure” of any complexity, but
if in its composition is the "eld of independert motion A, that is partial “eld canbe
allocatedto a separatefactor. Respectively, %eneral_eld of motion @ isrepreserted
asthe product of the partial elds: 2 = A2 °(this is usually called the principle of
superposition of “elds of movemert). In this case,all functions in expressionsare
scalar and complex. A particular caseis the eld of rotational movemert in own
frame of reference leading to the presenceof angular momertum known as"spin".
A generalform for solutions for such elds are expressedthrough the assaiated
Legendrefunctions and the exponertial function with imaginary argumert. The
quantum numbersof the moment and of its z-projection enter to the wave function
as parameters The importance of this result is obvious: there is no need use of
multi-comp onert wave function (tensors, spinors), attendant matrix units (Pauli
matrices, Dirac °-matrices) and rules of various conjugations. There is only one
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kind of conjugation { complex conjugation. Sud uni cation of description did
not hesitate to tell us the number of dynamic equations for the elds. It is not
dixcult to guessthat their number wasreducedto one. Thus, the equation became
universal, describing the behavior of any of the "elds of motion. This is evidence
of the unity of nature of all "elds and eliminates the needfor theory of uni cation,
that is a dream for theorists in the secondhalf of the XX certury. QTFM unites
them by an unprecedetied economicalway3?. ..

Massive particles in the traditional theory correspond to quadratically inte-
grated elds of motion in QTFM. It found the analytical solution for the classof
non-compound particles (scalar and fermionic) in its own frame of reference. At
transition to a moving frame of referencethe phasefactor appears automatically
in the solution. It correspondsto the de Broglie wave (in the traditional quantum
theory, aswe know, the de Broglie wave is postulated).

In explaining the nature of the physical properties QTFM basedon the princi-
ple that the "particles" should be determined asthe appropriate form of motion in
the eld. This, in particular, allowsyou to assaiate the massterm in the equation
of the dynamicsto speci ¢ "eld suc asradial oscillations. The key point is to use
an imaginary additive to density of momertum. The eld occured quadratically
integrable with the characteristic size{ the Compton wavelengthi . = ~=mc. In
this case,one of the necessaryconditions of the squareintegrability is a violation of
spatial parity of angular componert of eld of motion. As you know, a violation of
P-parity really take placein nature, that can be regardedasa con rmation of the
solutions. Using quadratically integrable functions for the massiwe elds of motion
free us from divergencesand, as a consequencethe needfor renormalization.

The secondhalf of QTFM is the vacuum theory. It is planned to preser
in secondvolume. Looking ahead, we brie°y commert on her. The model of
quasineutral vacuum has now beenadopted in QTFM. Self-consisten charge den-
sity °uctuations may exist in this vacuum. Oscillations have certain frequencies,
called vacuum fundamental frequencies. While it is believed that at least these
frequenciestwo: ! ¢ and! 5. Oscillation of various °uctuations of this kind sponta-
neouslysyndironized with the result that the sign of the energyof their interaction
is maintained (always only attraction or repulsion). Ignorance of the facts of os-
cillations, unobsenable directly, leads to the idea of the existence of electrical
permanent chargesof two polarities (see. introductory section 1.1 and footnote on
p. 127).

Spherically symmetric °uctuations with the frequency! ¢ can be consideredas
the rst, the most simple mode of vacuum °uctuations. The existenceof two other
modes{ closebinary and ternary systems{ is also due to the stability of them.
The systemswith further multiplicit y are unstable and cannot exist as stationary.
If we comparethis with the picture obsened in the microcosm, you can seethat
solitary (single) °uctuations may correspond to interacting particles owing to the
presenceof electric charge, and close multiple systemsdue to the presenceof a

30) Would be correct to say "do not separate".
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"strong charge". These °uctuation classesare actually independen becauseof
frequency di®erences,that create the illusion of a certain types of fundamertal
interactions. Fluctuations relating to di®erert modescan be interpreted either as
massie leptons (in caseof solitary °uctuations), or as mesonsor baryons (in case
of binary and ternary °uctuations respectively). Individual componeris of binary
and ternary systemsin this casecan be consideredas quarks (anti-quarks). The
guestionof con nement doesnot even arise, sincesuch quark by de nition areonly
distinct peak of the "eld (2nd and 3rd oscillation modes have respectively 2 and
3 local maxima in space). Rotation eld is superimposedon the above-descrited
“eld of motion and provide their angular momertum, which we interpret asa spin.
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Chapter 2

Development of the Quantum
Theory of Fields of Motion

No one will argue with the fact that the material is easierto learning if pre-
viously known the author's intention, i.e. given information about the motives,
forcing the story to move it in the desired direction. The reader easierwhen he
knows, for what reasonand why it is written that and then some. But to declare
the idea of the book, it is necessaryto run ahead. One of the main idea is as
follows: at a fundamertal level nature can be represerted as being controlled by
a common law, i.e. in fact by one equation. At di®eren stagesof its structural
hierarchy the equation can formally modi ed, "adapting” to the peculiarities of
a given level, but its main features are presened. So, for the scale of classical
physicsthis equation looks like

E2 2 2
but in the quantum scalelike
2
@@? + m~2°2a = 0; 2.2)
or even like
PrPa =0 (2.3)

The equation of masssurface(2.1), is known to be universally for everything that
has an energy E and/or momertum p. That's its "classical" form doesnot allow
it to handlein "the quantum world." But it should not be upset because(2.2) and
(2.3) is, however, the sameequation (2.1) which is written with referenceto features
of "quantum” mathematical apparatus. These equations are no lessuniversal in

51
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microcosmthan (2.1) in the macrocosmb and play the role of dynamical equations.
Thus, we can con dently to say that the world is ruled by the equation (2.1) {
(2.3), which is "one in three hypostasis". Recognition of this fundamertal idea is
to help with the further reading.

In this chapter we will
see how through a few
changesin the postulates
a new mathematical for-
malism for a relativistic
guantum theory may be
deweloped.  "Branching
point" will be the pos-
tulate about the observ-

ables,and a new method will be consecutive application of the principle of relativ-
ity. After choicethe direction di®erfrom thoseof QFT, we will build mathematical
apparatus which uniformly describe elds with arbitrary spin by meansof complex
scalar functions. As you know, the "elds with di®erert spins are described as dif-
ferent mathematical objects that makesthe theory cumbersome. In addition, the
lack of united mathematical description led to necessiy to seekways to further
uni c ation, becauseit is clear that the material world is one. New mathemati-
cal approad in this senseis universal, and therefore doesnot require theories for
uni cation.

Major new conceptsthat are introduced in this chapter three: the eld of
motion, density of dynamic variable and superposition of the "elds of motion.
Rest terms such as partial eld, reaction eld (eld of response)etc., are special
casesof theseand play the role of auxiliary concepts. Special attention is paid to
the description of interactions. As shown below, the proposedmethod in common
with phasetransformations in QFT, though not followsthem in details. His dignity
of clarity can be consideredwhen it is comparedwith the methods of QFT. Only
the electromagneticinteraction is consideredtaking into accourt for reasonsthat
will becomeapparert from the following reading.

The mathematical apparatus is formulated for the caseof the coordinate rep-
reseration. Due to relativistic nature of theory the majority of the calculations
carried out on the languageof Mink owski 4-vectors space. Intro duced postulates
by virtue of their importance placedin the frame. The readerwho is familiar with
the matrix form of groups of transformations of Lorentz and Poincare can omit
the next sectionand go right to get acquairted with the "elds of movemernt.

1 Equation by Klein { Gordon { Fock (2.2) unjustly undergone (and are now exposed) ostra-
cizedfor along time. In modern physicsthis equation has a modest role to describe the dynamics
of the "eld with zero spin. In this book the whole universality of the equation (2.2) is reveal.
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2.1 Time and space in QTFM

Spaceand time in which we consider the quantum objects, can be regarded
as united cortinuous 4-fold extended manifold having onetime and three spatial
coordinates. The physical quartities in it may have a certain "orientation”, i.e.
how would consist of componerts which are projections on the individual coor-
dinates. We ascribe indexes (which numbering the coordinate) to componerts to
refer the componerts relationship to chosencoordinates. Indexes are denoted by
Greek letters may run four valuesfrom 0 to 3, such as:

1=012 3:

Thus * = 0 corresponds to the time variable, and * = 1; 2; 3 correspond to
space variables. Sometimes, in order to distinguish the spatial componerts of
the quarntities of common 4-dimensional, we will denote them are not Greek but
Roman characters, for example:

oA11 AAX!
Al=@pA2A= A, =A
A3 Az

Thus, the designation of the coordinates themselesfor an arbitrary point of
manifold, which is geometric 4-spaceof our theory, looks like x*. With some
general approac the geometry of such manifold may be referred to Riemannian
and described by means of tensor analysis. For example, scalar product of two
vectorsa’ and b’ at point x" is given by 2

e :bi=geab; (2.4)
where symmetrical tensor

0 1
Goo Go1 Qo2 Qo3

g0 011 Q12 Oi13
glO = gﬂl =

G20 921 OG22 O23

O30 O31 032 033

is called as metric tensor. In this examplege and vectorsa', b, generally speak-
ing, are functions of coordinates. Such spacetaken in the General Theory of
Relativity (GRT).

However, a simpler special case of Riemannian geometry is Mink owski space
with the metric tensor that doesnot depend on the coordinates and equal

2) Here and hereinafter, by repeating (dummy) indices summation is implied { see.p.128.
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O3 0 0 ot
) _w_“_%oilo oé
F2F=9 79 TRo 0 11 0 &
00 0 i1

This metric is called the pseudo-euclidan, and some-
times { °at if we have in mind only the constancy
and equality by modulus of diagonal componerts of
g (and the absenceof non-diagonal). This simpli-
“ed version of metric will be used for building the
qguantum theory of elds of motion.

Tensorswith lower indices are called covariant,
and with the upper are called contravariant. It is

Hermann Minkowski easyto verify that the tensor g is the inverseto
tensorg” , i.e. their product givesidentity matrix:

go g %=+ flg:
Indexescan be raised or lowered by multiplication to the metric tensor:
gea =a; g b =Db andsoon.

This "index juggling" rule appliesnot only to the vectors. It is common. It canbe
applied to tensorwith any rank®, with any number of covariant and cortravariant
indices, for example: . .
Qo U@g% = Ul/%—:

It is only necessarythat the indices were related to the coordinates of the space,
i.e. that the quantity U~ has beendetermined in it.

By meansof raising or lowering indices operation it can be found, that spatial
parts of 4-vectors®) have di®erert signs:

0 o1
a
2 al
a = %,)az X ) a=(agananas) = (&% alij a%j ad):
3
a

Note that we write contravariant vectorsin the form of a vector-column and co-
variant vectorsin the form of a vector-row. This is useful for product operations

3 And not only to the tensor (for example, to the Christo®el symbols { see.p. 132).
4) This is usual name of vector in Mink owski space.
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with ead other or with the matrices when typically the row multiplying by col-
umn. When submitting a corntravariant vector with column vector the index runs
through the row numbers. The index of covariant vector (vector-row) runs through
the column numbers. If it takescortravariant vector to be written in text asrow,
then it should be provided with the transposition icon, eg:
0 o1
a

- 1
a = 'a% al a% a3¢T =@ a)"”’ % :2 X: (2.5)
23

Howewer, if from senseof presenation is clearthat we are talking about cortravari-
ant vector, it is permissible transposition icon does not write (though it should
be always remenbered). We will usethe symbol of transposition for this purpose
quite rare.

It is obvious that the nal choice of the signs of the spatial covariant and
cortravariant vectors is arbitrary. For them, we will usually use the following
stheme:

x' = (ct;r); x1 = (ct;jr); (2.6)

where a particular type of radius-vector dependson the choice of coordinate sys-
tem. Speci cally, in a Cartesian system with the unit vectors ey, ey, €, it is
equal
r=Xxex+yey+ze,= (XY, 2):
The sign of the spacepart of 4-vector will be chosenby rule (2.6).
If wetry accordingto the expression(2.4) to nd the scalarproduct of vectors
a , b’ with the new form of the tensor g , we can seethat

ke ;bizgoab =(gea)b =ab =(gob)a =ha:
Thus, the relation for the scalar product is
ab =ha =a%; alb'j a’? a%b*= a’t’; a ¢h:

This allows to calculate of the scalar product in Minkowski space without ex-
plicit use of the metric tensor g« , replacing it with the following rule: one of
the multiplicand should be covariant, and the other on the sameindex should be
contravariant.

The most important in the study of the movemert is the concept of frame of
reference. Sincewe're working in 4-dimensional Mink owski space,then to set the
coordinate referencesystemyou need:

2 Combine the clock ("observer clock™) and the origin of the spacecoordinate
system. The point at which measuring aids for time and coordinates are
combined, called the reference origin. In general,the referenceorigin can be
moved as you like, and/or rotate. The main thing, that clock and zero of
coordinates are coincidert for all time.
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2 Somemomert of time can be selectedon the clock of the obsener asinitial.

Figure 2.1: Obsenation from two inertial frame of reference

Thus prepared referenceframe is the most common. It movesnot necessarily
uniformly, and rotates. Meanwhile, an important role in mechanics play a simple
special cases. We con ne ourselves with dynamics of objects only in the inertial
referenae frame (IRF) and in uniformly rotating systems The former are charac-
terized by the fact that they origin is resting or moving at constart speedrelative
to "xed badkground stars"®, and the axis of spatial coordinates always remain
parallel to themselwes. In general,there is no inertia forcesin IRF, causedby the

Hendrik Lorentz

movemert of the system of reference. In uniformly
rotation systemsthere is the force of inertia (so-called
centrifugal force), but it has axial symmetry.
Consider a simple event such as instant dot °ash
of light from two di®erert inertial referencesystems.
Assumefor simplicity that coordinate axis of both ref-
erence systems K and K © are Cartesian and pair-
wise parallel (see. Fig. 2.1). Also consider that ref-
erencesystem K © moving relative K along the axis
y at a constant speed v = vy, and at initial time
t = t°= 0 the origins of both systemscoincide. In IRF
K for this °ash of light the time t and coordinates
r = (x;y;z) corresponds, i.e. it is assaiated with a
4-vector X = (ct;r). Similarly, in IRF K °the same
°ash correspondsto a 4-vector x¢ = (ct®r9. Accord-
ing to the special theory of relativit y, the relationship
between coordinates® in inertial referencesystemsfor

%) Archaic term.

8 For the sake of brevity we will often call the 4-coordinates simply "coordinates".
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similar caseis given by
x' =a'ox7; (2.7

wheren s is the Lorentz transformation matrix (so called boost matrix.)”). When
the direction of relative motion of the frames along axesy and y®is as shown, it

hasthe form 0 _ 1

y 0 % O
L O 1 0 o0

(Q ) o = % — o o § ;
Y yy O y O
O 0 0 1

where 1 1

_y = Vy=C; °y = ¢ — = g : (28)
1i 2 1j vi=c

For caseswherethe relative velocity v of the referencesystemis directed along
axesx or z, matrix @ o is equal

o — o 1 o —01
O o x 00 0 -, 00 7,
1_ _XOX °X 00§' 1_%0 10 O .
(°X)°‘% 0o o0 10K EdeT@ o o1 o A
O 0 01 e 00 °

respectively.

It is easily seenthat the Lorentz transformation for coordinates does not de-
pendon the coordinates. Its only parameteris the velocity v. The transformations
"distort" only time and coordinate along velocity direction v. There are no dis-
tortion of coordinates in perpendicular direction. For example, whenv k ey we
have

0l O °v 0 oy O 10 ct;’1 0 °y(ct°+0_yyf) 1
X § _ % 0O 1 0 O § % X § _ % X § _

% y _yoy 0 oy 0 yO oy(_yct0+ y% !
z O 0 0 1 z0 z0

which shown, that x = x° z = z% At the sametime, evenif it is assumedthat the
°ash occurs at the momert t°= 0 for systemclock K ©, then for the systemK it
can be non-zeromomert

") In general, the order of the matrix indices (left to right) is important. The st index (left)
usually is the line numbers, and the secondis the column number in which the active elemert of
matrix is located.



58 CHAPTER 2. DEVELOPMENT OF THE QTFM

Similar properties of the Lorentz transformations lead to relativistic contraction
of length and to time dilation of moving objects with an obsener standpoint?®).
Howe\er, there are alsounchangedvalues(invariants), the mostimportant of which
it is the relativistic interval betweentwo world points (everts). So, for two events
1 and 2 with 4-coordinates x1 and x2 in the coordinate systemK its squareis

2= Atz t)?i (x2i x0)?i (V2i YO)2i (z2i z)* (2.9)

In IRF K %everts 1 and 2 have coordinates xol1 and xdz, so the square of the
interval is

s® = i D% x3i xD?i ¢ YD @i z)H*

Thesetwo valuesare equal:

®?

2= %

S
The interval s is the analogue of the distance between points in Euclidean
space. Under Lorentz transformations its squareremains unchanged, which gives
reasonto interpret thesechangesasthe rotation in Mink owski space.As you know,
rotation doesnot changethe distance betweenthe points.
The interval betweenewvents with s? > 0 is called timelike, and with s? < 0 {
spacelike. Interval s? = 0 is called lightlike becauseof equation

=0 () r?= c’t?

describesa spherewhoseradius r growing with speedc. Only light can move with
this speed,that's why the interval hasthis name.

Concept of relativistic interval is usefulin clarifying possiblecausalconnection
betweenthe everts. Since SRT is believed that speed of light ¢ is the maximum
propagation velocity of interactions, it turns out that causally related events can
not be separatedby spacelile interval.

Within above mertioned transitions betweenthe coordinates x* and x% the
next relation for the coordinate di®ererials take place

N C S SR

dx @rdx =J,dx

(2.10)

where dx*, dx% are in nitely small coordinate incremerts (di®erertials), J5 s
transformation matrix (Jacobian matrix). The expressiongiven for di®erenials,
becausewe want to presene its general nature, i.e. leave it true for arbitrary
systemsof spatial coordinates gCartesian, spherical, toroidal, etc.). That is point
that the di®ereriials of type dx  alwaysare vectors, then asthe coordinates them-
seles of most systemsdo not form a vector! Take at least spherical coordinate

8 That can be found if two events separated by some distance ("length” of segmern in the
3-dimensional space) and, possibly, the time interval are considered.
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frame. Themselwes "normal” coordinates r, |, ' not even have identical physi-
cal dimension to be componerts of a certain vector. If even build a "physical"
spherical coordinatestyper; ri; r' siny, then in sud form they will not be vector
componerts, since the secondand third componens are courted along arcs and
do not have a xed direction. The transition to an in nitely small incremerts
(di®erertials of coordinates) givesthe vector

dr = dre; + rdue, + rsinpd' e
which, unfortunately, has a local character since it depends on the coordinates
r; & ' . Thanks to the dr the universalinvariant interval can be constructed
ds? = 2dt?j dr?; (2.11)

but only betweenin nitely close events!

Cartesian rectangular coordinate system is pleasan exception. If reference
system built on the use of this RS, the expression(2.10) can be deweloped to
the point that it will not enter the di®ererials of coordinates, but coordinates
themseles: )

1 @ d

X = @)—X .
Comparing this with (2.7), we can nd that the Lorentz transformation matrix is
Jacobian matrix, i.e. .
= & 2.12
o - @_ ( . )

Until now we deal with transformations of 4-vectors. Later, howewver, we will
needto corvert also tensors of higher rank, in particularly of second-rank. Let
shaw the de nition of tensor [7]:

T.il:::'ip _ X @il @ip @dl_,_@(_jq o.l_kl:::kp,
Jj1q @d(lm@d(p @Jl @Jq lizilg -

k;l

o]

(2.13)

i1:ip . . . . kq:k :
Here Tj}j? is given in some coordinate system x, and °T;7%{* { in frame x°
Leave this intimidating cumbersomeexpressionfor reference,and write for con-
verting of second-ranktensorson the baseof this expression:

o @ @ o _ @%@’ o
Remind that there is a rule of summation over the mute indices.

If the tensor (2.14) is compared with (2.12) it is obtained that the second-
rank tensor requires double multiplying by Lorentz matrix for direct or reverse
transition when changeof inertial referencesystemstake place:

B =n'go-" B®; Bw = (@ 1),®%@il) , Be: (2.15)

B Bio

(2.14)
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Here the following identities are used

o, =0, ;
which are obtained via application of the double operation of "index juggling".
These identities show that the form of the matrix does not change if row and
column indexes simultaneously move vertically, one movesdown the other moves
up. .

It is easyto understand that the matrix (o 1o for the inversetransition is
di®erent from the matrix @ o of direct transition only by sign of speedVv. In
particular, in the example above (see. Fig. 2.1 and the formula before (2.8)) for
motion of referencesystemsK and K °along the axis y it is equal

0 o — 1
y 0 i yy O
(aiyl)lo:% o0 OE;
i vy 0% 0
0 0 0 1

It may be necessaryto nd boost transformation in the more general case,
when the axis x and x% y and y® z and z° are parallel, but the speedof IRF K ©
relatively to K is directed at arbitrary angle. In this case,denote

_ v
vV = (Vx; Vy; Vz); = E; Cz p—-

then with somedegreeof cornvertionalit y the desiredtransformation appearin the
form [8] i | 0 B 14 |
ct o ° ° R ct0

=@ Y CE | : 2.16

Here f1 g is identit y matrix with size3£ 3, and - is the tensor multiplication of
vectors, i.e.
0 _ 1 o -, - - _—_1

X X Xy x z
- = %)_y X (x _y; Z) = Ty x _3 Ty oz 2:

- - - —2
z zZ X zy z

Note that all of the matrix of Lorentz transformations tend to the unit matrix
flg= » whenv ! 0. Physically it is interpreted as transition to Galilean
(non-relativistic) principle of relativit y, when 3-dimensional length of the vector
in di®eren IRS is the same.
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Let us now consideranother type of coordinate transformations that we will be
neededin the future. We aretalking about ordinary rotations into a 3-dimensional
space(see. Fig. 2.2). In contrast to the 4-dimensional rotations { Lorentz trans-
formation (boosts) which are directly related to the medanics due to movement
of frames relative to ead other, this rotation have more attitude to geometry
They do not describe rotation process,but just considerhow di®erert coordinates
of somethingin identical type systems,if the axesof these systemshave di®ereri
orientations.

Matrix for rotations around ead of the three Cartesian coordinate axesare:

0 10 0 0 1
) 01 0 0
(Rx) o = . ,
0 O cos® | Sin®
0 0 sin®  cos®
0 1 0 0 0 1
) 0 cos® O sin®
(Ry) o = § ;
0 0 1 0
0 j sin® O cos®y
(2.17) Figure 2.2: Rotation around axis z
0 1 0 0 0 1
. 0 cos® | sin® O
(Rz) % = ) :
0 sin® cos® O
0 0 0 1

Thesetransformations areto be understood asfollows: origins of spatial coordinate
systemsK and K ©are coincide; also coincide are axis around which the systems
are rotated through the angle ® . Obviously, that vector drawn from the origin of
CSto somepoint M will have di®erent "numeric corntent” on non-coinciden axis
in di®eren coordinate systems.

Sign of the angle of rotation ® of coordinate systems,shown in Fig. 2.2, and of
transformation matrix (2.17) for coordinates of objects in thesesystemscorrespond
to the transition from the variablesx? to the variablesx", i.e.

x' = R'ox%: (2.18)

Sign of the angle ® is opposite for reverserotation matrices.
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Sometimeswe will usethe alternative notation for matrices. Matrix play the
role of operators in quantum medanics, and the operators are marked with "hat"
above. This givesus an opportunit y to usethe samemethod for matrices. In order
not to clutter up the expression,we sometimesomit the indexesof the matrices,
marking matrix only by "hat":

A () A
For example, the expression(2.18) will have the form
x = Rx¢%

in theseterms. ) .

Boost matrices (=) o and the matrices of 3-dimensionalrotations (R;) o pos-
sessa number of remarkable properties. First, they determinant is equal to 1.
That is why they do not alter the scale,i.e. interval ds®. Second,these matrices
are orthogonal in the Mink owski metric, so

@) gee® = (a") Bi-= g
(RN g:oR® = (R")e Ri-= g

wherethe symbol 7, asusual, indicate transposition. In addition, this properties
for 3-dimensionalrotation matrix "hypertrophied” the fact that they do not a®ect
the time. Consequetly, they additionally orthogonal in Euclidean metric, i.e. also
take place a more simple relation

1

R R'g=+og= % () R'R=1:

Hence,the matrix inverseto the matrix of three-dimensional rotation R’ is ob-

tained from the original by transposition. No a such simple rule for the boosts, but

the samerule holds for combinations of matrices =T, @ with the metric tensort?:
o]

£ ., . B . o1
9 (") Qen® =% () (@") mi-=flg:

These rules help to nd the inverse matrices of transformations. Howewer, in
practice it is often possibleto do this by simple change of sign of speedor rotation
angle.

Third, the three boost matrix together with the three-dimensionalmatrices of
3-dimensional rotations form a 6-parameter Lorentz group, whoseparameters are
speedsv; and angles®,. Separately boost matrices don't create the group: it is

9 All vectors (including 4-D) denoted in bold when these symbols are used. It should not lead
to confusion, since the size of the vector is being determined by the size of the matrix.

10) What is also true for similar combinations of matrices R™, R with the metric tensor.
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possible"to walk around”, sequetiially performing transitions betweenIRF with
directions vy ! vy ! (i vx) ! (i w), and comenot to the identity matrix 1%,
but to rotate on a nite angle. It will be explained by matrix of 3-dimensional
rotation, which should be included in the group!

A remarkable property of our world is the lack of an absolute referencesys-
tem!?. Therefore, all physical phenomenaoccur no matter how much our local
time or what their location relative to us. In other words, the initial momert
of time and the zero point of coordinate measuremeh can be selectedarbitrar-
ily. That's how we cometo an even wider group of transformations, the so-called
Poincare group. It speci es the type of transformations

x' = L'ox% + x'; (2.19)
whereL s is Lorentz group matrix (4- or 3-dimensionalrotation or they combina-
tion), x' is a constart shift of the origin of referenceframe. As to 6 parameters
of Lorentz group added 4 parameters (componerts of the 4-vector of shift), the
Poincare group is 10-parametric. Of course, the Poincare group as the Lorentz
group maintains invariant quadratic form (2.11).

The di®ereriation will beanimportant part of our calculations. The equations
describingthe behavior of systemsusually contain not only the wave function, but
alsotheir derivatives. More often there are derivativesof the coordinates. Sincewe
are going to usethe languageof 4-vectors, it is necessaryto be able to di®ereriate
at x . Our derivativesshould cortain connection coexcients (Christo®el symbols)
i ® to take accourt of the cortribution given by the inhomogeneousmetrics if
we work in curved Riemann spaceor in a curvilinear coordinate system of the
°at spacé®. Why is it can be clearly seenon the example of a derivative of
vector quartit y. Supposethat in the 3-dimensionalspacein a curvilinear basise;,
i = 1;2;3; the next vector eld a given:

a= ae = ale; + a’e, + aes:

Let the coordinate system, assaiated with basis e;, denoted as X'. Then the
derivative of the "eld a for this (curved) coordinates will be

@ _ @deg_ @ @ _

U U - TR

i o W T
=@e.+a'i‘ike1= @+a'i‘ik &: (2.20)

1) What could be expected on the basis of traditional ideas, as ead transition we compare
with opposite transition.

12) For now, at least, it is not discovered.

13) There is an exception: the di®erertiation of a salar do not has the connection coe+cients
(becauseit doesnot have separate componerts).



64 CHAPTER 2. DEVELOPMENT OF THE QTFM

Here we have used the basis completenesse; and decomposed part of the the
secondterm on its vectors:

@ _ j_.

@k ke
The expansioncoezcients just called connectioncoezcients. It can be showvn that
they are expressedn terms of the metric tensor componerts (see. section 2.17).

Howewer, our theory will be built in the Mink owski space,and, for exception of
special cases,we will prefer rectangular Cartesian coordinate systems. When the
basis vectors are constart, the secondterm in (2.20) is zero, and the expression
for the derivative becomeseasier.

The tensor analysisin the di®erertiation adopted the following rule: derivative
with respectto variable with lower index givesobject with the sametop index and
vice versa. For example,

@\ _ @ @

@\zfl; — = Ui, =AZ; —— = Buw

@ @ @ @
Therefore, the di®ereniation with respect to covariant vector x. adds cortravari-
ant index for object, and di®ereriation by cortravariant vector x* { covariant. For
the purposeof brevity, for the 4-gradiert we will usethe notation (see. footnote
on p. 128)

l 1
g.@_ e ' o e "ie '
@ c@ " @ c@
where operator nablain Cartesian rectangular coordinates is
@ @ @ .
r = @ex + @ey+ @ez_

Important operators in eld theory are the Laplace operator

i @@=¢=r%=r¢; =123 (2.21)
and d'Alembert operator
1@
@@:2:?@; ¢: (2.22)

The latter, asit is easyto gure out, is invariant for all inertial referencesystems.
Indeed, according to the form it is scalar product of two four-dimensional vectors
{ 4-gradierts @. Scalar product of 4-vectors in Minkowski spaceis invariant to
IRF.

The following property of gradients is very useful in practice. In order to pass
from derivative of scalar function f by some"old" coordinates x® to derivative
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of the samefunction by "new" coordinates x, it can di®ereriiate f ascomposite
function \
f=f(x%x"));

namely:
gr- @ . @ &
@1 @QJ @1 )
It can be shown that14
00 1
% ) %: (2.23)

It is recommendedto remenber this rule, becausewith its help for contravariant
derivative of a scalar function is easyto obtain

NG @ &% _ @& 1
af = = &t =nA.t; 2.24
@ ata @l (2.24)
where Ao is Jacobian matrix of transfer from coordinates x® to coordinates x":
x" = Ao x% + const : (2.25)

To facilitate memorization, note that in (2.23) "increments" of variablesin numer-
ator (&%) and in denominator (@: ) excangeby places;at the sametime, the
type of the index is change: if it was covariant, it bgcamecortravariant, and vice
versa. Eventually it is occurthat the direct matrix A o isusedto nd cortravariant
derivative (see.(2.24)),whereasthe reversematrix is usedfor covariant:

@ &° e

f = — = @of (A" %) :: 2.26

@ = go g - @AY (2.26)
As already mertioned, the d'Alembert operator is Lorentz-invariant:
_ 1@ . _ 1@ g

@@=8d () Ggit gge ¢* @2

In the end of this sectionwe nd out how Laplace operator ¢ is corverted by
changing the IRF. From (2.27) for any function f it is following that

1Mer @
2 @@ @

Let of the samename spatial coordinate axesof two referencesystemsk and K ©
are parallel. SystemK %movesrelativeto K with speedyv in the positive direction

¢f=¢O0f (2.28)

1) 1t follows, in particular, from the relativistic invariance of d'Alem bert operator.
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of axis z, wherein the time t = 0 origins of both IRF were coincided. The matrix
of forward and reversetransformations due to acceptedconditions are:

O o Oo_ol 0 o OO i_ol
) 0 10 0 1 0 10 0
A, = ; (A" ) o = : o (2.29)
0 01 O 0O 01 O
" 00 - i ° 00 -

To get rid of variables of the systemK in right side of (2.28), let executethe
following identical transformation:

Y Y
1@ _ 0 "a
@0

g@z @0 ; (2.30)
Q 0
%= @(@q, %{0 = @@q, gc? = [Rule (2:23)] =
@ -, 0.
= A% @)f = E@)l @J,
@ @:@&’ i@._q:l 6 @ @
@0 @& @O 07 ¢ @0l @O’
g "o e'Mae @'
2@ c@' @ ca@' @
_GMier 2z e e
= ?@' ?@0@04' @® (2.31)
Substitute (2.31) to (2.28):
. 02 —0 2
¢f =¢% i Li 2@ 2°° Gf | .,0f (2.32)

2 @(Q' T@O@O @®

Analyse this result. Whenv! Owehave ! Oand®° ! 1. Hence,in non-
relativistic limit, i.e. in the caseof low speedwe obtain:

¢f e G: (2.33)

There is another important special case. At arbitrary speeds(including large) for
the time-independent of t° function A we nd:

) ., @A
¢A=¢%A+ 2 2@: (2.34)
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Taking into accourt equation for the Laplace operator in the coordinate system
K 9we passto the following relationship:

 GA GA GA GA GA _,GA
At e e e a® @

This expressioncan be given a clear interpretation. It is known that in the motion
at speedv the coexcient p

1= = " Tj o=@

characterize the reducing of length of segmets in the direction of movemert. In
our example, under the obsenation from the K the length of any object, which
is stationary in K % will be changed along the axis z in 1=° times. It means
that if dx® dy®, dzCare di®erertials of coordinates in "rest system" K © then the
coordinate di®erertials in IRF K are

(2.35)

dx = dx®
dy = , dyS
dz = 1i v2=c2dz®

"Squares of incremerts” of the argumerts &%, @®, @% in expression(2.35)
are, in fact, the squaresof coordinate di®ererials. As far as they are in the
denominator, we get the explanation of the ° 2 coexcient for the third term on the
right side.

2.2 Field of motion

The ditculties engenderedby useof quantum medanical wave-particle duality
for transition to the relativistic theory have been discussedin the Chapter 1.
These dixculties can be overcomeif cortroversial, but generally acceptedimage
of particle-wave will be dismissed. For further we will assumethat

within QTFM any object of microcosmcan be considered
as continuous in space. Formally, it can be comparedto
a complex scalar function of 4-coordinates x* = (ct;r),
which hasthe usual properties of continuity and di®eren-
tiabilit y in the whole space,with the possibleexceptions
at somelimits and/or singular points.

(Postulate 1)

This object and this function will be called eld , or morefull, "eld of movement,
for the following reasons. Firstly, becauseit is cortinuous, and the eld in the
classicalsense,as we know, also cortinuous.
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With this function we intend to set

the distribution for oneor other phys-

ical quartities in spaceand time; thus

these values are also contin uous func-

tions of the coordinates. Therefore,

our object acquires the properties of

the classical eld in the analytical

sense,or, in a more complex case,the

ensenble of these elds. Secondly as

regards the secondpart of the name,

it is appealing to movement then all

dynamic variables involved in the de-

scription of the objects of quantum theory and which have beenused,in one way

or another connected with the movemert. It is either direct characteristics of

movemert intensity (such as kinetic energy momertum, angular momertum) or

the characteristics of the interaction, which causechangesin motion. Therefore,

we concludethat movementin various forms is the main essene of the material

world whereby it should be the main "guran t" of our description. Under forms

of movemen are meart, above all, its geometry and dynamics, instead of what is

move (not a moving substrate). We will denotea eld of motion by the symbols
a A, Aand soon asin quantum mecanics.

By their mathematical

nature? in QTFM isasalar

(one-commnern) and, gen-

erally speaking, a complex-

valued function of time and

coordinates, identical to the

simplest wave function of

guantum medanics. We will

not resort for this purposeto

multi-componert structures

(vector column), asit is usually done in quantum medanics and following the-

ories, becauseany spin we will describe by scalar functions. This di®erencein

the technical details, but there is one fundamertal. This is what is meart by the

argumerts of eld of motion and wave function. SinceQTFM is relativistic theory

and its equationshave to satisfy the principle of locality, then default value of eld

of movemert in equation is given for somearbitrarily chosenpoint of space-time

x" = (ct; r), which we call point of considertion 2. This point is not required to

be the masscerter of the "eld,coordinates of which we denoteasr . in the sameco-

ordinate system. Meanwhile, it is obvious that value of eld of motion substituted

into equation may depend on the relative position of the eld masscerter and

point of consideration. Thereby we receiwe that for full notion about eld of mo-

15) Refersto the consideration in equation.
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tion it should be written in the form a( t; r;r ). Recallthat in quantum medanics,
enjoying the wave-particle approad, the wave function normally is written in the
form A( bmrg), i.e. it is assumedbehind the sceneghat equation can be written

to the point where the particle is located!®). And the probabilistic interpretation

of the wave function lies precisely in the fact that for eac point of spacej? j?
comparesthe density of probability that the masscerter of particles canbe in this

point. QTFM doesnot ignore the probability meaning of the wave function, but

due accourt of locality the accers in determining are shifted. Through "eld of
motion 2( t;r;r.) the density of this or those dynamic variable of the "eld 2 atr

determined under the condition that the masscerter of 2 hasthe coordinatesr .
Howewer, we are not always for the sake of brevity, will write all the argumerts
of "eld of motion, meaningthat they are known to reader. Especially it concerns
to the r¢, which is usedas a parameter but not the main argumert in the most
QTFM. Sometimes,as a matter of fact, we will not write the argumerts.

It hasbeenknown that the habits, both good and bad, are overcomegradually.
We make a replacemen from corpusclesto continuous elds in the grounds of the-
ory, but in the previous cernturies peoplegot accustomedto particles that sharply
completerejection of this term can causeconfusion. The more often this word was
used simply as a synonym for the word "object" not investing in its content no
information on the sizeand "design”. We alsowill usethe word "particle” in this
sense.Soeven if you nd this word standing near to the "motion "eld" do not be
surprised!

In this chapter is too early to discuss"internal driving forces" of elds of
movemert. It's still early to think about the movemert of what these elds are
under an obligation. We will look at later at the details, but for now just try to
construct a theory where di®eren objects of the microworld to be brought to us
asits various solutions corresponding to elds with di®erert geometriesof motion.
Nevertheless, it is now easyto seethat the transition from the corpusclesto the
cortinuous eld of motion promisesgreat bene ts. The fact that the momertum
of the particle appearing in traditional quantum theory is always a momertum
of relative motion of whole particle in some "external" referencesystem. This
momertum is not describe any internal detail of the particle. The momentum
density is di®erert thing that can be ertered in the transition to cortinuous eld
of motion. The Fig. 2.3 schematically shows the eld, which is combination of
“elds of rotation and movemert along the radius. It is not hard to gure out that
due to symmetry its total momentum is zero. However momertum density locally
not will be zero. You could say that sheforms a "p ower line" on this gure. And
the fact that the density is undetectable for momertum measuremehn of the erntire
“eld doesnot meanthat its density is not important for the dynamics of the "eld!
If the angular momertum operator "act" on the eld than you get some nite
value, which indicates the presenceof rotational movemen. Consideringthat the
“eld is shown in intrinsic IRF, we can cometo conclusionthat it hasown angular

18) |n fairnessit should be noted that the point is assumedarbitrary .
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momertum { spin.

Nothing prevents usto add alsotransla-
tion to the depicted pattern, i.e. force eld
as a whole to move relative to the external
obsener. Thereby it gets more and the mo-
mentum that quantum medanicsis able to
describe (using de Broglie waves). But the
existenceof a separateradial eld of motion
in the composition shown in Fig. 2.3 still
remains outside of quantum medanics, be-
causeit exhibits total momertum as zero.
However, if hidden under the corpuscular
approach rotary eld of movemert is able
to explain sud obsened value as the spin,
we may well suggestthat both the hidden
“eld of movemert { radial { should also be
responsible for some well-known character-
istic of microparticles. But more on that
later.

At the end of the sectiononceagainturn
to the continuity of elds of motion. The simplest its form we nd in the clas-
sical elds, such continuity can be called as classic. It characterize the fact that
the density of dynamic variables such as energy momertum, etc. in the physical
“eld are characterized locally by simple combination of the eld function. Today,
however, nobody will be surprised by "quantum mechanical" view of corntinuity.
It consistsin the fact that dynamic valuesare concerrated on the particle. The
particle may even be consideredas a point, but at the sametime it has continu-
ous wave function and derivatives. Being alloyed in unite formalism this synthesis
presers cortinuous value suc as the probability density to detect point particle
in some"point”. To cover the whole of the density distribution in the space(see
his "geometry”) can only be statistically after of a large set of possibleelemerary
outcomes”). Further this type of cortinuity we will call stochastic. For clarity we
canimagine the following situation: if contin uousdistribution obtained by "smear-
ing" of independert!® object on the space,then this is the stochastic cortin uity.
It is not ditcult to guessthat this picture is easyto retouch, sothat discreteness
was fully excluded. Namely the role of a point particle can be provided by center
of massof cortinuous object. After all, "smearing" of contin uous object just gives
the samecorntinuous function. In addition, up to now no one has seriously proved
that elemenary particles are actually point-like! After that, all of the eld of
motion can be regardedas essetially cortinuous, asit is said in the Postulate I.

Figure 2.3: Field of rotational and ra-
dial motion

1) |n fairmess it is appropriate to note that due to the enormous rapidity of processesn the
microcosmit takesso little time that it was for us unnoticed, looks like a °ash.

18) In the physical sense.
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2.3 Densities of dynamic variables

Let some eld of motion 2( x*) is given in the space-timewith coordinates x" .
Without lossof generality, we considerit right normalizedto 1, if it is possiblein
relation to this "eld1?. It may have a di®eren dynamic variables and parameters
such asenergy momertum, the angular momertum, charge, mass,etc. All of these
physical quartities are distributed in spacewith somedensities which a priori are
not constart. We introduce such a determination-postulate:

Dynamic variable, which corresponds to operator F, in
the “eld of motion 2( x") has densit y

D(x') = 2a°"Fa;

where the complex conjugation is denote with star .
(Postulate 11)

Sometimessymbol D will followed ascribed marks which indicate belonging of
density to the physical quartity or to the “eld: Dq(x"), D. (x'), D:.. and soon.
Thus, the density of the dynamic variable determined by the quadratic form of
the "eld of motion. Running a little forward, give a couple of speci ¢ examples.
So, if dynamical variable F is 4-momertum, then we obtain the next expression
for density of 4-momertum:

Dp (x')=2°p'a = j2"@2 =

The density of sud variable as z-projection of angular momertum, can be repre-
serted as @
Dy, =i i-? =
@
where' { the azimuth angle of the spherical coordinate system.

In the eld of motion the densities of all dynamic variables are correlated
between themseles just through a "eld 2. This allows us to speak about the
whole of this ill-assorted characteristics as an aggregaterelated to one (single)
object. Simple squaredmodulus of the eld, i.e. combination

jj?=2% =D.(x"); (2.36)

we will call the density of the "eld 2 at point x". Hereit just clari es the motive
why the function should be normalized to one (1). With sud normalizing the

%) The normalization of the "eld of motion is identical to the normalization of the wave function
in quantum mechanics.
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calculation of full value of any dynamic variable F (summed over all space), we
obtain the value of this a variable, not distorted by the module 2, since multi-
plication by 1 nothing changes. Field 2 becomeslike invisible, any contribution
to the result proportional only operator action. And we just need undistorted
densities of dynamic variables, becauseonly through them manifests itself any
microworld object! In the casewherethe eld of motion @ has also probabilistic
sense,the normalization to unit allows to remain within common agreemem on
range of changesof probability.

Sincewe have mentioned the probabilistic interpretation of the wave function,
then it's time to talk how erntered here de nition of density of physical quartity
consister to quantum medanics. It is obvious that it doesnot have cortradict. In
QTFM we beliewve that the objects themseles{ a eld of motion { is cortin uous.
Wedivide the spaceinto elemenary volumesdV, in ead of thesevolumesby means
of density we obtain the amourt of physical quartity (2 °F?3) dV. We summarize
theseamourts until you iterate over all of them. Eventually we obtain the required
value of F in the ertire “eld. Notice, that in this approad, the coordinates r of
current point of consideration are independent variables for integration.

In quantum medianicsthe wave function argumerts are the coordinates of the
particle??). This is particularly evidert from the form of wave function of identical
particle system with symmetry with respect to permutations. Recall that the
argumerts which permutation sometimeschangesor does not changethe sign of
the total wave function this is just the coordinates of the individual particles of the
system. But miraculously every particle is considered"smeared" over the space
to the state of corntinuity, while the number of WF value at an arbitrary point r
such that j2 j? is equal to probability density to nd a particle at that point. We
can nd a particle at ANY point of space,however, with di®erert probabilities,
which is a weighting factor in calculating the integral of density. We will be faced
in the Chapter ?? with a situation where initially "univ ersal" WF (the argumert
{ point of consideration) needto be transformed into "stochastic" WF taken in
the certer of massof the particle.

Summarizing, we can expressthe essence
of the di®erencesin QTFM 2 is a measure
of the intensity of continuous "eld and de-
termines the densitiesof dynamic variables.
This situation is typical of classical elds.
For example, we all know that electromag-
netic ‘eld F* determinesthe density of en-
ergy, momertum, etc. Density of energywill
increaseby 4 times if intensity increaseby
2 times. The qualitativ e picture is di®erert

20) This is equivalent to approach of QTFM with condition, when coordinates of certer of mass
r are argument of eld of motion. Point of consideration would coincide with the certer of mass
of the "eld.
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in quantum medianics. The particles are discrete and the notion of density arises
due to stochastic "smearing" of the particles in space.In this case,2 de neslocal
density of probability. It is obvious that these di®erencesare related to physical
interpretation, i.e. to somemodel ideasabout the theory of objects. As for math-
ematics, the sameactions are performed when calculating the total values of the
“eld.

And what is the density of the dynamic variable F, ass@iated with two “elds
a; and 2 ,? Looking ahead a bit, let's say that, accordingto one of the basic
principles of QTFM, which is in quantum medanicstoo, elds of motion 2 ; and
@ , in principle can be uni ed into onecommon eld of motion @ = 3( r;r;r>y).
The form of new eld and its properties are dependert on the properties of the
original “elds?Y). Here, however, is not the place for these details. Formally, the
density of value F is expressedn the sameform

D = @ °Fa; (2.37)

but now it should be take in mind that the 2 is somecombination of the "elds 2 ;
and @ ».

Density is a key conceptin QTFM. Transition to the mathematical description
of all objects as a continuous elds is owing to it. It makesits important ideo-
logical role and clari es the interpretation of microworld objects. Intuitiv ely, the
main "working portion" of the "eld, by which it acts on its environment, is there
somewherewhere more density of energy momerium and so on. Densities are
numerical measureof intensity of movemen and/or interactions which, in turn,
make heuristic content of eld of motion. Secondly the mathematical approad of
QTFM s built primarily on the languageof densities. It meansthat equationsare
formulated for densities. Since density is local value, the requiremernt of locality,
required for relativistic theory, is satis ed automatically. And as we well know
from experienceto get the full value of something from its density, the density
should be integrated.

By the way, the equations of the theory should not be written in its ertire
form asan equation for the density. We were lucky with the fact that the density
is represented as a quadratic combination (2.37) of eld of movemert, while the
equationsusually cortain only "half’, i.e. F2. This leadsto the remarkable fact:
all equation of quantum mechanics is very easyto corvert into the equation for
densities. It is enoughto multiply them at left side on the 2 °. For example,
Sdrodinger equation

ooa@ a
|E—I4

21) Only in the absenceof interaction approach the common “eld is expressedthrough initial
“eld in a more or lesssimple form.
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transforms into the relation for the density of energy:
ERLESELTEY

dt

From the ideological point of view, it is wiseto look at this fact with the opposite
side. There is a fundamenrtal opportunity to "reduce" 2 * in the laws of nature
(relations for densities) and have simpli ed equation, which is used by quantum
medanics, without even knowing it. We will also be more likely to usethe tra-
ditional form of the equations, but now it will always be the realization that the
density behind them.

2.4 Instan taneous and observable values
of dynamic variables

All information about the material world we get from obsenations using while
various devices. Most of our obsenations in the microcosmostaken up by study of
those eld of motion that correspond to the movemert relative to the outer frame
(de Broglie waves). In traditional quantum theory the internal elds of motion are
ignored, they substituted with the conceptof particles. Further, from the everyday
experience of obsenation in macroworld we have learned to belief that improve
the accuracy of the measuremehn can be in nite. We decreasesensorsto reduce
the e®ectof the measuringdevice on the obsened phenomenonto minimum. The
smaller is the elemen, the lessin®uence it will have on the subject. So, it would
seemnecessaryto reduce and reduce! Alas, it is possibleonly in the macrocosm!
Then we reduce to the point when sensitive device elemerts becomeindividual
particles of the microcosm, then situation becomeselusive. The object and the
devicein this casecan be regarded as belongingto microcosm, and they interact
accordingto its laws. It is important to note that only the information obtained
after completion of measuring processcan be consideredas result of obsenations.
This meansthat this information is ready only whenthe object and the instrument
has interacted and went to their asymptotic states. For example, an electron in
atom had moveal to another level, and atom had emitted a quantum, which had
registered by our photomultiplier. Or ®-particle had deviated by nucleusin a
certain direction and had beenregisteredby watchful eye of the obsener asa °ash
in the phosphor screen. The processof transition (interaction) from asymptotic
initial to the nal state always remains outside of our accessbecausethe act of
measuremen, by de nition, must be completed. Joint mutually causedmovemert
of the object and the devicein the processof formation of the result we can not
observe we seethe consequencesHowever, this doesnot mean that there is no
movemert. Often you can even mertally restoreits details.

We have already drawn the reader's attention to the fact that the formalism
of equations on eigernvaluesin quantum medanics does not give any idea about
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cortinuous ewlution of the system from the initial to the nal state. Therefore,
many physicists believe in quantum leaps when the transition betweenthe initial
and nal state is instantaneous. There is no need at this interpretation in any
modi cation of the expressionfor the quantum-mechanical average

277
hEi = a"Fa ¢3y; (2.38)

which is actually much deeger. If we think about it, it realizesthe transition from
density of quantity F to its full value in the object.

Previously, we found unprovability of "instantaneous" approach to the concept
of obsenable (seeChapter. 1), therefore proceedto the fully contin uousdescription
through "elds of motion. In this connectionit is necessaryto emphasizethat since
being introduced in QTFM densities D (x") are local variables (i.e. functions
of world point), then the expression(2.38) would be comparedto instantaneous

value of F for eld 2 in all spaceat once (at sometime for the clock of the
obsener, taking integral over space). We have to acceptthat the averaging should
be performed not only in spacebut alsoin sometime interval ¢, in order to avoid
disturbancesin the principle of causality. We formulate the following postulate:

Observ able value of the dynamic variable F for the "eld
of motion 2 is

tge2 777
HFi= = dt° a“pa gx;
ti ¢=2
where ¢, 6 0 is speci c time interval for the eld 2( t;r).
(Postulate III)

A key role is played here by the inequality to zero ( niteness) of time frame ¢. As
we shall seebelow, this leadsto fundamertal consequencesAlso it is easyto see
that for eigenfunction of the operator F asin the caseof the expression(2.38), we
obtain

hFi=F;

becausehere eigervalue can be moved out of integrals (it can be out of the time
integral becauseit is stationary, i.e. is the integral of motion).

The question arises,why do we needsudc a complication if obsenablesde ned
only by the initial and nal statesand are usually are eigervalues. Howevwer, this
statemert is false! The world is full of examples,when it is not true. Hereis one
of the simplest atom physicsfor hydrogen atom. When the atom is in a magnetic
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“eld H, the energy level with quantum numbers n, j, given by formula of thin
structure also has energy due to interaction with the magnetic eld of the orbital
and spin magnetic momerts of the electron (see. Section ??). Equations lead to
the additive

En = 1s(l + 2s) ¢H ; (2.39)

where 1 5 is Bohr magneton. Howewer, this result is correct in relatively strong
elds H. In weak elds it is not consistert with obsenations, from where we
concludethat in this casethe formula (2.39) is not nal! To understand what was
going on, the physicists had to abandon notions of instantaneous quantum jumps
and agreethat the obsened value is generatedfor some nite time. Here's what
transpired.
Orbital and spin mo-
tions of the electron
can be seen as dis-
tinctiv e whipping tops
with angular momerta
| and s respectively.
In magnetic eld vec-
tors of angular momen-
tum of charged parti-
cles should su®er the
Larmor precession The
"nal picture of the en-
ergy terms depend of
the magnetic eld H .
If it is weaker than
the magnetic elds of
dipolest |, 1 4, created
by the orbital and spin motion of an electron, then the dipolesprimarily interact
one with another. Vectors| and s are assaiated with ead other stronger than
individually with the magnetic eld H . They form the total angular momertum
vectorj = |+ s, which is slowly precessingn a magnetic eld. The additive (2.39)
wherein can be represerted as

Ev =i dizteH; (2.40)

where j, is z-projection of full momertum j, H ~ jH j, and dimensionlessfactor
g is called as Lande factor (g-factor). This is no doubt that the existenceof this
term takesthe time not minimal then precessionperiod of j around H (in this
exampleH coincidesin direction with the axis z). If this were not so, what kind
of precessioncould talk about?! And the fact that the expressionfor the E, not
includes, for example, x- and y-componerts of the total angular momertum j, is
the fact of evidence. Due to symmetry of rotation, precessiorhas signi cance only
for projection of j on H , and it is constart over time, sothat its averagevalue is
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equal to instantaneous. If we assume,for example, that the magnetic eld little
changeduring the period of precessionof j , then in the expression(2.40) actually
ernter the averagevalue of H.. ..

In more strong magnetic eld, the precessionof the vectors| and s is di®eren.
Now ead of the magnetic momerts of the electron (orbital and spin) interacts
more strongly with a magnetic eld H than with ead other. As a result, eat
of them has their own precessionabout H . This is equivalent the casewhen the
angular momerts | and s precessindependertly, without creating aj. Averaging
(2.39) for greater period of precessionleadsto the expression

Ew =i te(m+ 2s;) H;

where mis azimuthal quantum number for orbital angular momertum, s; is a
quantum number of z-projection of spin. Thus, we seethat the formation of the
obsened values of energyis due to projections of j and |, s on the corresponding
axesduring their precessionmovemert, which is a periodical. Consequetly, at
least one period of precessionshould be laid during the measuremen, so¢ 6 0!

Finally, we make one important remark. That feature, that obsenable is
formed per nite period of time, put usin front of surprising fact: somephysical
quartities, although given the measuremen of " rm" results may be on actually
change cortinuously, for example, oscillate. We have already repeatedly resorted
to such an assumption, but then it was not quite clear what is all about. Now we
seethat supposing ¢, > 0, we give principal possibility to oscillate for any physical
quantities acceptintegrals of motion. Can not even exclude the possibility, when
generally consened quartit y composedof two componerts which are oscillating in
concord. As an example, the total energy of the oscillator, where the kinetic and
potential energy oscillate with di®eren phases.

2.5 Stochasticit y. Con guration space

Isolated “eld of motion 2( r;r¢), which
has physically localized certer (for example,
certer of mass) is shavn on the Fig. 2.4.
Supposewe needto calculate the obsenable
value of a physical quantity F, relating only
to this "eld. We x the r at the time corre-
sponding to the beginning of the interval ¢,
and calculate the spatial integral as making
a snapshotozf the ggire “eld in the space

hFi = 3 dt® a®fa 3. (2.41)
4
where density D(r) = @ °F2 taken at one

by one points of the partition of spaceinto
Figure 2.4: Isolated "eld of motion
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elemertary volumes. One sud volume elemen d3x is shown in the vicinity of a
point at r { the "running" point of consideration. Then the described procedure
is repeated in the following momert of time, then another, etc. { until we reach
the end of the interval ¢. In this case,it turns out the following property of
the integral. Even if the certer mass of the eld shifted over time ¢, integral
for eadh next "frame" (i.e. for next xed r¢) will be the samein spaceas initial
one. The eld is alonein the entire space,and there is no other material body for
reference. The result is independenceof averagevalue of HFi of secluded eld on
the coordinates of its certer of mass. Picture will be the sameif seweral elds are
present but the property F, which we want to calculate dependsonly on the one
“eld.

Quite di®eren is the caseif we want to calculate the obsened value of quartit y
F, which dependson seweral elds. The most common example of such kind is
to calculate the characteristics of interaction of two elds. Let there be given
two “elds of motion 2 1(r;r1) and 2 »(r; bmry), which instant coordinates of the
certers of massare r1 and r, respectively. They can changeindependently. The
obsened value of F, which depends on the relative locations of the “elds should
be calculated. To be speci ¢, let it is dependenceon the distance

ro=jraj roj

between certers of massesof the elds. Introduce geneal eld of motion 2 (see.
section 2.3) to describe density D. It is expressedthrough the starting elds in

the simplest case,for example: 22
3(rasra) = 2 1(ro)? 2(ro):

Through this "eld of motion density of dynamic variable F is expressedn corven-
tional form, i.e. by formula of Postulate I1.

Recall that the time integration in (2.41) is performed within a nite interval
oftj ¢=2to t+ ¢=2. Sincewe agreedthat elds are moving, the distancer,, can
continuously change. It makes adjustments to the calculation of the value hFi.
Since,accordingto the agreemen, the mutual movemert of elds are independert,
it meansthat when each more or less xed position of one of them?3) second eld
may have any coordinates for the certer of mass. Fig. 2.5 illustrates an example
wherer is xed and r, runs through all valuesassignedby the laws of motion.

If the certer of massof the eld 2 , appearslonger (within the interval ¢) at
somepoint in space,it is obvious that the cortribution to the result of evaluating
HFi from this points will be more signi cant. The point has more "weight factor"
in the total courting. The "weight factor" of the point, by de nition, givesthe wave

22) This particular example! There may also be a combination of symmetric and antisymmetric
pairwise products depending on the spin of the particles. Three "elds producethree multiplication,
etc. However, this works in the approximation of free movemert.

%) |dealizing, we can assumethat this position is xed.
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function of the quantum

medanics with its proba-
bilistic interpretation. In-

deed, the portion of time

which the object spent at

point r,, relative to the to-

tal time ¢ which given to

object to "mark" on the
whole space, is just equal
to the probability detect it

at this point. QTFM ap-
proach leads to the same
result, so in it the eld

of motion numerically de-
pends on two vectors: the
certer mass coordinates rj

and consideration point co-
ordinates r. The last take the most active part in calculations. The certer of each
elemen of spacefor integration can be consideredas point of consideratior?®.
But this point, like the silent indexesin the summation, modestly silent about
its participation. So the samefunction asin quantum medanics are remained,
although with a di®eren interpretation. Therefore when the certer massof the
‘rst “eld is xed at somepoint (i.e., r; = const), the certer of massof the second
“eld varies over the whole space. The integration is performed over the spaceof
coordinatesr », wherein ead point takesinto accourt the local value of 2 . Such
spaceis called the con guration spaceof the particle 2 in quantum medanics,
and integral is called the integral over the con guration space.We have no reason
changethese names.

Founded integral over d®x, that's not all what we need. The “elds have equal
impact on the result. The sameway asin the rst case,you can assertthat until
the second eld has coordinates of the center of massr, = const, the certer of
massof the rst “eld could be anywhere. Movemert is independert! Therefore it
is necessaryto calculate the integral over the spaceonceagain, sincethe vectorr 1
also runs around the space.Now it is the integral over the con guration spaceof
the 1st eld. As aresult, for the obsened value is obtained:

Figure 2.5: To the calculation of quantum-mechanical
averagehFi. Center massof the "eld 2 ; is xed, certer
massof the “eld 2 , is varying

tze2 7

dt® aFa i d3x,; @ =a@ ;e y): (2.42)

=t
<

tj ¢=2

24) If "eld @ 1 is xed, the spaceelemerts should run around all its possibleconsideration points.
It is suggestedthat the center massof the eld 2 , located in these points. The picture is reversed
if the "eld 2 ; is "xed.
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It is obvious that by further increasingthe number of independent “elds for cal-
culating HFi integration over their con guration spacesis required. The total
multiplicit y of spatial integral will be equal 3¢N, where N is the number of elds
included in the ensenble.

2.6 Complex densities?

Here we suddenly cometo yet another as-
pect in determining of the densities. What
numbers { real or complex { should be ex-
pressedcomponerts of densities>? We are
accustomedthat obsenablesin the conven-
tional quantum theory always are real. Op-
erators of physical quantities are charged as
Hermitian to comply with this requiremert.
In QTFM obsenable valuesare obtained by
integrating their density on the space,soto
avoid the possibility of complex numbersin
the result, it would seem,you must take care
that densitiesshould bereal numbers. What
to do?

Yes, the dynamic variables in quantum

medanics are consideredto be real. How-

ever, the discussionof non-obviousnessof this provision was dewvoted considerable

part of the chapter 1, in particular the section 1.3.3. Also we add, that if any

part of the dynamic variable is included in equation as quadratic form, then, in

principle, we are not obliged to require it to be real. Especially if equation is

general.

Thus, we do not adhereto support the unproven sight that densitiesshould be

real numbers. On the cortrary, we will assumethat

densities of dynamic variables can be complex numbers.

(Postulate 1V)

This doesnot meanthat the all densitiesin the elds of motion are complex. This
postulate does not prohibit the existene of elds with suc densities. That means
not only Hermitian operators can participate in mathematical apparatus of the
theory.

25) We talk about components of densities becausethere can be scalar, vector, tensor etc.,

depending on the nature of the dynamic variable F. For example, charge density is the number,
but density of momentum is vector.
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In fact, it is nothing terrible in the complex density of dynamic variables. As
we will see,all the "elds of motion are subject to a single dynamic equation, and
this equation belongsto the classof so-calledwave equations. Solutions of suc
equation are waves, and there is nothing supernatural that one dynamic variable
oscillates with di®erernt phasethan another. If two of these variables are always
appear in the system dynamics as a pair, it begsthe idea to combine them into
one complex value...

2.7 Does God plays dice

Postulate 111 about obsenables,which was acceptedin section2.4, has essetial
philosophical signi cance, and it would be unjusti ed negligencenot to mertion
about that. Therefore, we stick to the main objectives of this chapter { dewel-
oping the mathematical apparatus for QTFM { to close such complex topic as
interpretation of quantum theory.

As you know, the debate over this issueis particularly sharply °ared up in
1927y. at V Solvay Congress.The main themesof criticism and controversy have
beenreports of de Broglie's theory of "pilot wave" and Bohr, Born and Heisen-
berg reports which defendingthe so-calledCopenhageninterpretation of quantum
medanics. Brie®y, the essenceof this interpretation is as follows. Although we
have to attributed corpuscularand wave properties to micro-object, it is, strictly
speaking, neither particle or wave in the normal sense[9]. This is just a third
thing which doesnot occur in the macrocosm. However, oncewe get the informa-
tion about it through the device, which is classi@l (macroscopic), this obtained
information is expressedin classicalterms. Classicimagesof wavesand particles
are the most suitable. But a microcosmitself is a completely di®erert world, a
world with its own laws. One of the most distinctiv e laws is probabilistic behav-
ior of objects?®). Bohr, Heiserberg, Dirac and Pauli werein favor of the rejection of
causality principle in the el-
emertary processes. Dirac
argued that "Nature doesa
free choice" in them (i.e. it
means that does not mat-
ter what event will follow
next), and Heiserberg in-
sist that obsener does this
choice. Einstein, Lorenz and
Sdcrodinger opposedto the
Copenhagen interpretation.

Discussionbetween Bohr and Einstein lasted from meeting to meeting. Each of

%) M. Born proposedthe statistical interpretation of the wave function in a year before the
Congressin 1926.
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the opponerts comeup with their own questionsand argumernts, which becamethe
subject of further discussion. Einstein said the famous phrase objecting against
the principle of indeterminism of CopenhagenSdool. He could not allow that

"The Lord hasresortedto the help of the dice". In this way he wanted to express
disagreemeh with the rejection of the principle of causality. However, all of Ein-

stein's objections were refuted at the congressand the Copenhageninterpretation

had won.

Sowho wasright { Bohr or Einstein? Currently the dominant position of the
Copenhageninterpretation is presened, and the majorit y of physicists, most lik ely,
will prefer Bor. However, after we had the idea of nite time of any measuremen
(obsenation) and we acceptedthe Postulate |11, we can say that there both were
right! Nature strictly adheresto the principle of causality in the local sense,
preseriing our experimental picture of events, which is not other than probabilistic
namedat the sametime. The point is that obsened picture and picture described
by di®ereriial equation are two di®erert things! The obsened picture is not local,
it refersto the object as a whole and always formed in a nite time. But due to
historical errors physicists developed a habit to perceiwe it asan instantaneous.

Wave functions and wave eguations are
local, and density, which managedby them,
are cortinuous together with their deriva-
tivesand for this reasonlocally agreedwith
speci ¢ time direction. This is the causality
principle in corvertional (classical) sense.
Then Einstein was right. Howevwer, it is
mathematically describable, but unobserv-

able side of reality. If we turn to the obsenations, we seequalitativ ely di®eren
picture. During the nite measuremen time ¢ due to cortinued availability of
disturbances’”) both the object and measuringdevice do incredibly large number
of movemernis. A "smearing" position of the certer of massin spaceis the result
of this process. At any of these positions the object can be registered, and it is
obvious that the probability to nd the certer of massis greater in those points
where it appears more often during the measuremen time ¢. It turns out that in
this caseBohr wasright. "Dice" is indeedthe case,but now we understand that
it is an observablee®et, although universalin microcosm.

Base of the problem was in the fact that the physical quartities, which we
write in equationsand which is obsened not the samethings. We are not talking
about their physical nature { it is the same. But when we write the equations of
motion for a microscopic object and then perform measuremets, we are dealing
with a di®eren status of physical quartities. In the rst caseit is cortinuous
variables (dynamic variables) which locally satisfy the principle of causality. In

27) For example, “jitter" of the electron { Zitterb ewegung { has not been "cancelled" (see
Chapter 1). Besides,later we will seethat there are many other "elds of motion, from which the
object "have no place to hide."
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the secondcaseit is integrated over spaceand time valuesof theselocal variables,
which had lost spatial-temporal connections (and, hence, causality) becauseof
integration. And let no one not mislead by eigernvalue equations: they also give
"integrated"” result, just the density in this caseis an integral of motion (constart)
and automatically can be imposedout of the integral. Therefore, the integral
symbol is not even appear in the equation.

Probably, everyone had
heard the phrase: "An elec-
tron does not has a trajec-
tory". Now we seethat it
is not true. Correctly is to
sa:. "An electron has a tra-
jectory, but it is unobsenable
in principle”. And of course,
it is much more complicated
than lines, ellipses and hy-

perbolas, which we usedto seeas classicaltrajectories. The main sourceof suc

complication is oscillation of electrical chargeswith fundamertal frequency about

which it is planned to tell in secondvolume of book. Its consequencein particu-

lar, is "jitter" of the electron { Zitterb ewegung. Various disturbancesthat distort

the ideal path or change position in spacealso take place in classical physicsin

motion of planets. But these in°uences are usually small, unperturb ed motion

remains basic. All can be otherwise in the microcosm. The main motion may be
"trem bling", but translational movemert of averagedcerter of massfor the time

will be something as a slow drift. But if we ignore the "jitter”, the situation will

change. So, for movemert of statistical "trem bling certer" the trajectory becomes
adequate and a useful concept. What trajectory in this caseexists (at least in

the samesenseasthe trajectories of bodiesin classicalmedianics), it follows from

calculations of "school quantum theory". Still N. Bohr at the initial stage used
something similar to get the wavelengths of light which is emitted by atom. The

essencas following. An atom is similar to Solar System: the coreis located in the

certer, and electrons move around on the orbits. The Coulomb attraction to the
nucleusplay role of gravity holding the "planet" in orbits, acting with force

- Z€

ler—z,

where Z is the charge number of nucleus, which is equal nhumbers of protons, e
is elemenary electric charge, r is the distance betweennucleusand electron. For
simplicity, considera one-electronatom { a hydrogenatom, whereZ = 1. Also for
simplicity, we considerthat electron orbit is circular, and radius equalsr. Let m is
electron mass,and v is its speedon orbit. Let us write the balance of certrifugal
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and certrip etal force®:
mv?
v
Expresssquare of the velocity and energy:

2 — i i | T = m_V2 = i
mr 2 2r
Note that all calculations were classical. It meansthat the conceptof the electron
trajectory is quite classical. It is circle with radius r, where classicalaccelerations
are balanced. But someadditional condition is required to nish the task "to the
number”. And only herethere is a need of "quantum medanical" consideration:
orbit radius must puts an integer number of de Broglie wavelengths, :

L

N

= E: (2.43)

2Yxr = n; n=12 3;:::

Intuitiv ely, it is clear: in such condition atom will be obsened as "frozen picture”
of the chargedistribution in space.Thereforehewill not haveto radiate. Note that
this condition itself not imposesnew requiremerts to the dynamics of the atom,
as it is private caseof expression(2.43), allowing any radius r. We emphasize
in passingthat it is assaiated only with the obsenation, about that we are now
know, that it is a very long "integral” process.

Howewer, cortin ue the calculations. The de Broglie wavelength

Y

mv '’

5

therefore, the condition for the radius of the orbit can be written as follows:
mvr = n~:
Using the previously obtained ratios we obtain

n2~2
r= —;
me?

then we nd the well-known expressionfor the energy of an electron on the n-th
orbit: .

me* 1

— ¢!

It allows you to nd with satisfactory accuracy the wavelengths emitted or ab-
sorbed by hydrogen. The fact that we found it on the basisonly of the classial
dynamical expressionsusing the conceptof the classicaltra jectory, says that such

En =

28) The Coulomb attraction play role of the certrip etal force.
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trajectory takesplace. Otherwise, what then circle of radius r and the balance of
forceson it? We took advantage of this model, and it gave us the correct results.
And what was still an additional condition for the radius, so, is in fact, it did
not introduce in the dynamics anything new! It only ful'lled the selectionamong
the potential candidates: atoms are stable (i.e. long-lived) when the radius of the
electron orbit meetsomeconditions. They do not irradiate and therefore presened
for a long time. By the way, for that time trajectory will ewlve to "clew", which
just coincide by shapeswith the quantum-mechanical "cloud of probabilit y".

2.8 Superposition of elds of motion

As it was mentioned in Chapter 1, consistent using of the principle of relativit y
allows to 11 a gap in the description of the state of object in intrinsic frame of
referencein terms of wave functions. At the sametime we inevitably encourter
one feature of the formalism assaiated with the simpli cation or the increasing
complexity of the problem.

In general,the geometryand dynamicsof elds of motion canbe quite complex.
Howewer, in some casescomplex motion can be represerned as sugerposition of
seweral more simple. In this case,it is not only and not so much of the system of
multiple “elds of motion with individual certers of mass(particles). Even a single
object may have sewral independen degreesof freedom of movemen and be a
combination of "elds, corresponding to these degrees. It turns out that in this
case,the total eld of motion and the elds included in it binds simple relation:

If the eld of motion 2 consistsof indep endent elds

of motion A, A A, ..., than it canbe preseried assimple
algebraic product
a = A¢cAc¢Ac...  AAA:::

(Postulate V)

The “elds A, A, A, ...is called as a partial “elds for main “eld 2. Each of them,
in general,can be given in its own frame of reference,for example:

A= AK'); A= Ax%); A= Ax);
If operator acts on the compound eld of motion 2, it must formally act on all
partial “elds included in 2. For example,if 2 = AA, than its 4-gradiert is
@ = @(AA) = (@A)A+ A(@A): (2.44)

If the operator is expressedin one frame of reference,and somepartial eld pre-
serted in the another frame of reference,then in the expressionfor this eld we
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must transfer to variable, in which the operator is expressed. Lets in example
(2.44)

A=AXx): A= Ax%); x% = 3.x"+x': X' = const

then when 4-gradiert of 2 calculated in the coordinate systemx’ , the “eld A will
be di®ereriiated as a composite function. Expression (2.44) will have the next
contin uation:
i ¢
a = (@A)A+ A@%% = (@A)A+ A(@A) I (2.45)

where g

@A &
This is the embodiment of principle of relativity in the formalism of the theory. In
particular, this permits to considerspin as a partial eld of motion % de ned in
intrinsic referencesystemof eld assaiated with its certer of mass,and to obtain
its description without using of multicomponert WF (see. below).

If the framesof referencex’ and x¢ is inertial, the Jacobimatrix J°, is actually
matrix of boost and/or 3-dimensional rotation, i.e. Lorentz group elemern (see.
Section 2.1). In the example (2.45) under calculation of the gradient-4 the shift
x" gives0 becauseof constancy soin this casethe Lorentz group is enough.

Do not confusethe superposition of the elds of motion and superposition
of states of randomly selected eld of motion A. Partial "elds A and A exist
simultaneously in the superposition of “eld of motion 2 = AA i.e. at any time
t "work" both degreesof freedom assa&iated with these elds. Example easyto
“nd in the physics of the atom. So, often complete electron wave function can be
represented asthe product of radial and angular functions:

2 nim = Ra(r)Yim(s' ):

Fields if motion Ry(r) Yim (W' ) existindependertly, and they are included in the
a asmultiplicands Other exampleis the wave function of independert particles:

a = MAAz: AL+ i ]

If some~elds A; is identical, then the combination will be either symmetric or
antisymmetric depending on the type of statistic. But this is additional feature,
the main thing is that the wave function of all incoming objects are multiplied.
When we talk about a superposition of states, we are talking about individual
states of the same eld of motion. The wave functions corresponding to di®erert
states of an object added (being multiplied by the weighting coezcients). At the
sametime, as we have noted, there is dixcult situation with the interpretation
of quantum medanics. Start from the fact of linearity of the equations for the
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wavefunctions someonesupposesthat if object can be in states A1, A, As, ...,
then it can alsobe in a state expressedby a linear combination of

A= ClA1+ C2A2+ 03/5\34' i (2.46)

where the square of coexcients jc¢ij> = ¢ are equal to probabilities to nd it
in the i-th state. And sorrowfully that due to the complication of the physical
interpretation of quantum medanics often we have to hear that the object is in
all states of A;, Ay, Az, ...simultaneously. Remenber the notorious paradax of
Sdrodinger cat that is both alive and dead until such time as obsener opensthe
box and looks on (seechap. 1). But if we suggestthat the time ¢ spernt on the
processof measuremetn is always nite and that the object, in principle, can be
repeatedly changeits state within ¢, then everything falls into place. It is easily
explainedeventhe probabilistic content of coexcients: for time ¢ object alternately
passesfrom one state to another. It is essefial that at any given time2® object
exists only in one state, i.e. states are mutually exclusive "everts" 3%, Howewer,
in some of the states of the object it returns more often than others, or spends
more time in them. From that when desired dynamic variable, that obtained by
averaging, is measuredover a period of ¢, it will receive a greater contribution
from the state in whereit spert more time. Therefore, this state must have more
weight in the amount of state. This explains the formula (2.46).

The advantage of the formalism is being built hereis the ability to focus atten-
tion to arbitrary selectedpartial “elds of motion. In this casesolution leadsonly
to the e®ectscausedby these elds. Unselectedpartial elds at the sametime
are not going away, they do like "remain in the shadov". For example,if in the
dynamic equation we substitute “eld of motion with composition 2 ; = Af % we

29) Literally , asa moment that lasts innitely small.

%0) Expression (2.46) implies that the sum of the squaresof the coexcients ¢; (i.e. the sum
of the probabilities of all states) is equal 1. This is typical just for of mutually exclusive events
that can occur over a some period of time. But the probabilit y of simultaneous existence of
independert events is equal to the product of their individual probabilities!
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will take into accourt the spin3Y), and if we substitute 2 , = Af , then the spin will
not be courted. To get the most complete results, you must selectthe all partial
“elds of motion, i.e. write @ asat most long chain of their product.

All of the above appliesto the generalfeatures of the theory of "elds of mo-
tion. Concerningto practical work with formalism, it is appropriate to make two
important remarks. They are introducedinto the formalism by the speci cs of the
physical phenomenathemseles. First concernsthe work with so-calledstationary
“elds of motion (see.p.39). The time dependenceof such elds is given by

(t)» e EFT =@t

Probability should not depend on time for the stationary eld. Only the phase
changesover time in the relation, and the module of the wave function remains
unchanged. When the whole eld of motion is stationary, it is stationary in all
of its degreesof freedom. This meansthat all of its partial eld also should be
stationary. Suppose,for example,

a = AAC= A(x)AYx?): (2.47)
where "elds A and A are as follows in ead of its referencesystems:

Ax'y=e " 1tAr);  Ax%) = e ! 2°AYr9:

Product of time-dependert exponerts uni es:

a = @i 1t 2O A AYr O

If referencesystemsx” and x% do not move relative to each other (or their relative
speedis low in comparisonwith speedof light), then

2 yyei (1t DAL= o (B EE==AAD
Energiesare added:
a = EFAN= e " 5TAAY E=Ej+ Ey

This situation leadsto the fact that for a certain considerationbecomesndi®erert,
with what partial "eld is binded one or another energy Moreover the physical
phenomenainside the isolated system 32 dependsnot on the value of energy but
from local deviations from it. An exampleis the relativistic energy

Eo = mc?:

31) Field of spin movemert is designate as %
32) |solation is a necessarycondition for stationarit y.



2.8. SUPERPOSITION OF FIELDS OF MOTION 89

If the "eld of motion A in this example describesthe linear movemert with mo-
mentum pj, then it correspondsto the kinetic enemgy
r ——
— o 2. 2. o P1 .
Eq1 1mc®j mc", 1 1+ me
which at low speedsmuch lessthan Eq. Obviously, the mc? is descendedfrom
some"b owels" of the eld under consideration, i.e. with the needis born in the
frame of referencerelated to its certer of mass. Meanwhile, in physics there was
already a tradition that just Eg is postulated as an additiv e constart, which does
not interfere to solve equations.

When the relative speed of systemsx” and x% is comparable with the speed
of light, it is already necessaryto apply the Lorentz transformation to nd the
product of ! 2t% asit is seenfrom the referencesystemx’ (or expressthe operator
in terms of the frame of referencex? , that ewvertually give the sameresult). Since
these transformations mixes spaceand time componerts of 4-vectors, the nal
time-dependert exponert includes not only the frequency of the “eld A° but also
componerts of wave vector k°

The secondimportant private remark connectedwith suc a kind of "elds of
motion as a spin. In this book, this “eld is discussedbelow, so we forced in our
story get aheadof ourselves. For greater clarity, we will explain a speci ¢ example
of an electron in an atom. To be specic, in (2.47) x' is a system of reference,
which deals with electron movemert as a whole®® (orbital motion) and x% is
intrinsic frame of referenceof electron related to its masscerter. Sincethe spin is
"internal” propertg of the electron, the spin motion eld ¥igenetically ass@iated
with the systemx® , sowe can write:

A= %r9% 9;

where %r 9 is somefunction, which dependson r° (radial wave function), and go,
' Oare the anglesin the spherical coordinate system coincided with certer of x° .
Howewer the feature of the spin eld is dependenceonly on angles. It does not
depend on the distances. Angles are measuredonly betweendirections. If there
are no factors disturbing the orientation of the coordinate axes(such as magnetic
“eld, causingthe Larmor precessionof the orbital and spin angular momerta with
di®eren frequencies)then in all referenceframesyou canenter acommonframe of
referenceof angles. For example, as do astronomers: they are read right ascerion
RA from someconvertional in nitely remote point of spring equinax lying on the
celestial equator (the plane of which de nes an origin of secondangular coordinate
{ declination Dec). The anglesof both referencesystemsmay be identical. Thus,
formally we can assumethat spin "eld generatedin the frame x9 dependson the
anglesy, ' of the systemx’ :
Ya= W' )

%) Connected with masscerter of atom.
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Sincethe partial “elds of all framessimply multiplied in 2, this allows usin some
casesto "delegate” ¥from Alto A:

a = @i "t AeogrA3q1Cr O1 = e 't Ay oz 0\
= _{AZ_ ¢[/6r‘5/£\%u, O)g [ef " YAV )] ¢%r9): (2.48)

This explains the tradition of quantum theory to characterize wave function of
particle by spin part in manner asif it is generatedin the system of coordinates
where its relative motion is considered?.

About imaginary transition of spin eld of motion ¥from oneframe of reference
to another, might not have to say, if not for the following circumstance. The
solution of the equation of the dynamics for the independen degreesof freedom
often using separation of variables. We obtain the equations for the individual
frames of reference. With a further decisionis de ned that the dependencethe
partial eld ononecoordinates candependon the parametersdueto its dependence
on the other coordinates of the samesystem. For example, form of the function
%r9, in general, dependson the spin s, which is the main parameter of the “eld
¥.arising when solving the equation for this eld. Therefore, the "delegation” of
the “eld %in A is irreversible only when nobody is interested in the “eld %r9.
Otherwise, for the solving equation in own frame of referenceof electron the spin
“eld % "withdra wing back" (to the variables [ ' 9. After nding %r9 in its
erntirety spin eld can be consideredformally again owned to A.

Due to such a phenomenonas a superposition of elds of motion it is also
necessaryto make somespeci cations related to the concept of density. When all
partial “elds in the @ = AAA belongto the sameobject®® (for example, orbital,
spin and other movemert of the sameelectron), the density of the "eld 2 is simply
equal

Da(x')=2%x" )3 x") = A"A°A"AAA:

One integral in spaceis suxcient to take the calculation of the integral charac-
teristics of the "eld 2. In this casethe con guration spaceof particle (one!) is
equivalent to an ordinary 3-dimensionalspace. If WF includes elds of motion for
se\eral separateobjects (particles), ead of them hasstochastic properties and also
has in its composition di®eren partial “elds, it should be expressedin terms of
initial WF of objects. To calculate the integral characteristics of suc full (general)
“eld of motion, it is necessaryto take the integrals over all con guration spaces
(see. section 2.5).

34) It should be note that due to the loss of clarity in the traditional approach to spin in
guantum mechanics the interpretation is veiled, and for the mathematical description not used
the anglesy; ' , but a set of variables in additional abstract space.

%) Quantum medhanics would say "to one particle”.
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2.9 Energy-momen tum of eld of motion

In classicalrelativistic medianics, kind
of which is a special theory of relativit y,
the 3-dimensionalmomertum p is a spa-
tial componert of vector of higher dimen-
sion, namely of 4-momenum vector:

As you can see,the energy E divided by
the speedof light cisincluded to this vec-
tor as temporal componert. With tran-
sitions betweeninertial referenceframes
x" andx% the 4-momertum vector trans-
forms as

p =L opd);
where Lo is a matrix of Lorentz group (see.section2.1),which describe boost
and/or rotation in 3-dimensionalspace.

As it is known, the scalar product of two 4-vectorsis invariant with respect to
coordinate transformations. This rule appliesto scalar product of 4-momernums.
For any object, represening a closedsystem,there exists well-known so called the
equation of masssurface

2

pp =mE () i p?=m (2.49)
where constart m is the mass of object in intrinsic referenceframe (invariant
mas9. Under transition to the quantum theory of elds of motion we have to
from relation (2.49) passto continuous description of dynamic variables through
their densities. In this case{ through density of 4-momertum. According to the
Postulate 11, in the eld of motion 2 is equalto

Dp =27 2:

It remains to determine the form of the 4-momertum operator. We will not
go into all the details and intricacies of its output from "rst sources", as they
not exist. There are Lagrangian and Hamiltonian formalisms, from which it is
follows that coordinate and momertum are conjugated3® quartities and expressed
in terms of derivativesby their "companions.” There are considerationsof linearity

36) Canonically conjugated, Hamiltonian conjugated.
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of operators, pursuing the goal of superposition of states, aswell astheir Hermitian
character providing reality of quantum-mechanical averages. However, excluding
the nite value of the quantum of action all of this knowledgesare not able to
lead to nal form of momertum operator. Therefore we solve the given task on
the basisof already known speciesof own wave function, although it is againstthe
commonrules.

Obsenation of de Broglie waves of particles moving at a constart speed(and
thus having a certain momertum) leadsto the conclusionthat they canbe assigned
to the expression

a = a g i(Eti D‘T'):"; a o = const
Such an expressionfor °at wavelooks more laconicin 4-dimensionalrepresenation
a = agel P x=, (2.50)

It is not dixcult to guessthat if we di®ereriiate this expressionwith x:, then
we obtain p*2 (with someconstart factor). Therefore let our desiredoperator of
4-momertum is presened in the form

p' = a@ ’ ag' a= const

@’
then act by them on the wave
1 @ |a. 1 . - |a 1
a = a - __ a el Ip Xa - a :
P @ =P i —P
Using the condition j ia=~ = 1 we can nd the factor a, then the 4-momertum
operator becomes:
H. 1 M. T
. i~@ . . i~@ .
= ~ = R -~ . h = -~ = —— |~ 2. 1
p' = i~-@ c@iiitt P i~@ ca (2.51)

Incidentally we note that plane wave (2.50) is eigenfunction for 4-momentum,
because

pla — pla :
Sothe density of 4-momertum of eld of motion 2 is equal
Dy = i-2°@2:

In particular, in the sameplane wave

_ ‘11:_._.1_ -'11:~_ 1 . -2 .
Dp = i~20e® ¥ T (jip =~)2 o P T = p j2 ¢j°;
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i.e. energyand momertum densitiesare constart3”) in it:

H 1

E_ . ..
Dp: = ;Jaojz: pj? o

The integration over the ertire spaceto nd a total momertum of wave (2.50)
leadsto a divergert results. This indicates on incompletenessof plane wave model
takenin isolation from the conceptof the "eld of motion in the intrinsic reference
frame3®. In future we will seenthat by its origin it obliged to Lorentz transfor-
mation of the "eld of motion, originally takenin own frame of reference.

2.10 Angular momentum of eld of motion

As is known, the angular momertum in classicalmedianicsis determined by the
vector product of the coordinate and momertum. So, for a material point with
coordinates r and momertum p it is

M =[rEpl] (2.52)

We are going to build a relativistic theory, becausewe needto know how this value
behavesby changing the referencesystems. To nd the mathematical form of the
componerts of the angular momertum, it will be usefulto pay attention how all
the componerts of the vector product look. For arbitrary vectorsa and b in the
Cartesian coordinate systemwith the unit vectorsey, ey, €, we obtain:

e ey e -
c=[afb]l="a a a _=
be b b

= (ayb, i azby)ex + (azbc i axb)ey + (axby i ayh)e::

We note that the componerts of the vector product can be written asan antisym-
metric combination

c = aly i ajb; ij;k=11,23g;, k6i;, ké6j:

37) If momentum had beena function p° = p' (x’) of coordinates, then the other, more com-
plicate expressionshould turned out from di®erertiation of exponert by x" .

%) If our goal is only to get the relative valuesof dynamic variables of plane wave, it is possible
to formulate it not for the whole space,and for one area of wave period (to calculate the integrals
over the same length wave and take their relationship. Due to the periodicity of the rest space
pattern is the same,i.e. obtained relationship is saved).
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This immediately suggeststhat in the 4-dimensional space-timethey are compo-
nents of an antisymmetric tensor:

Vector i ¢
N = M% M% M% = (Nx; Ny; Nz) = ctpj rE=c; (2.54)

with componert included in the energy-momentummoment 3% tensorM™ , some-
times is called as Lorentz moment [10]. Sincethe angular momertum is the 2nd
rank tensor, it meansthat when you changethe IRF it should be corverted using
the application of matrices of the Lorentz group two times:

10

M* = o'ea"M® (2.55)

Come from the material point to a continuous eld of motion. We needto
‘nd an expressionfor the density of its angular momertum. In accordancewith
Postulate |1 we get:

DM(Xl): anlola — an(klpo i kopl)a :

Sincethe wave function is always a scalar, then under strict relativistic approac
the density of energy-mometum momens obviously is a tensor of rank 2. It
must be remenbered when frames of referenceis under changes, in which the
4-dimensional rotations, which are the Lorentz transformation, mix up angular
momertum M with Lorentz momertum N . When we are not talking about
changing the referencesystemsor when the relative speed of IRF is small and
relativistic e®ectscan be neglected,it is possibleto use 3-dimensionalsymbols for
angular momertum:

Dy (t;r)=2a°Ma;:
In correspondencewith (2.52) we suggest
M=re£p=ii~rfer; (2.56)
where we use momertum operator (2.51). Thus,

Dy =ji=®@°(r£r)a: (2.57)

%) Sorry for tautology.
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In the previous sectionwe found a form of the density of the energy-momentum
and eigenfunction of the operator p* as a plane wave. Similarly, it would like to
‘nd eigenfunctions for operator of the angular momertum. Now we will busy
ourself with this problem. Intuitiv ely, becausethe angular momertum is as-
sociated with rotation, then it will be better to look for the necessaryfunc-
tions in coordinate system speci cally adapted to display angles. Most com-
mon are cylindrical and spherical CS. Usually solution has the same symme-
tries as a CS. This refers the most economicalway not only to the recording
of the equation, but to the boundary conditions. The cylindrical system has
rotational symmetry, and it's good for the viewpoint of suitability for describ-
ing of angular momertum. But on the other side, it has even the notorious
"cylindricit y", i.e. freedom o®setby axis z. Without special boundary condi-
tions or boundary conditions de ned on coordinate surfaces, solutions will be
obtained "cylinder-lik e". We know that the microcosm objects looks more like
globules,than ascylinders. Therefore, in our choice we stop on the spherical IRF.

Fig. 2.6 shavs normal relative position
of Cartesian rectangular and spherical coor-
dinates, resulting in the connection

X = r sinpcos;
y = rsinpsin’; (2.58)
Z = I COSW:

Denote Cartesian rectangular coordinates
by xI = (x;y;z), and spherical as x9 =
(r; " ). Then matrix

Figure 2.6: Cartesian and the spheri-

is the Jacobianmatrix for conversionvectors . )
cal coordinates of the point A

at the transition betweenthesetwo systems.

Matrix g
iy, = 20
k @k
is similar matrix to the reversetransition.
Angular momertum operator componerts have the following form in Cartesian

CS: q
e i y@, @
1 @ @ 1
1 u
. @ @ . @ @
My =i~ 25l Xg M, =i~ x@i Vo (2.59)
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Transfer these expressionsto variables x9. The coordinates xi in the CS x¢ are
(2.58). The derivativesare:

a .

If equation (2.58) is solved relatively r, |, ' , and thesevariables di®ereniated by
X, Y, z, then reversetransition matrix can be obtained

sinpgcos'  sinpsin' COSU
SN @r: ') _ cospcos  cospsin'  sinp _
(3" axy2) ; p i : (2.61)
_sin’ cos'
: rsiny rsiny
1

Derivativesof2 by x! in terms x* can be obtained using this matrix in accordance
with (2.60). Finally, making all necessarysubstitutions in (2.59) we obtain the next

result: | H. @ @ﬂ
My = i~ sin' @+ ctgucos' @ ﬂ
My = i~ui cos' %+ ctgusin' g ; (2.62)
M, = |~%.

Note that the angular momertum operator doesnot depend on r, and it depends
exclusively on the angles. That is why it is called as the operator of angular
momertum. In view of the above it is natural that the eigenfunctions of angular
momentum depend only on the anglesy, ' 49. Operator of z-componert of angular
momertum has the simplest form in (2.62). Perhapsthat is why this operator
always is preferred to operators of the other two componerts.

Angular momertum M is still a vector, although is axial vector*)). Conse-
quently, it has direction and length. The length of the 3-dimensional vector is
equal to

q
M™ jMj= MZ2+M2+MZ

40) In considered here a spherical coordinate system. Meanwhile, there may be other CS
containing angles. For example, a system with Euler angles.

“1) Also called as pseudo-vetor. Unlike "normal” (the so-called polar or true) vectors it does
not change direction with the coordinate system inversion.
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Squareof the angular momertum M2~ M ¢M is usedin quantum mechanicsdue
to the fact that it enters directly into the equations of dynamics through Laplace
operator (2.21). By the samereason,we will alsouseit instead of M.

Let's nd operator M 2. The equation

M?2a = l\ﬁx(l\’/Txa) + My(mya) + I\ﬁz(mza) ;

leadsto H & & 1
M2a = -2 2+ctgug+—_l2 5
@, @ sinPp @
which transfer to
u 1
1 @
Mz 2 @ L oqu@. - 2.63
i qe " CoH S @2 (2.63)
Laplacian in spherical coordinates is
_@ 2@, 1,
where so called angular part is
@ @ 1 @
¢, = —+ctgu— + —: 2.65
W gt e sie H@? (2.69)

If we compare with (2.63) we found that Laplacian includes square of angular
momertum operator:

_ @ 2@ 1 2 2_ . 2 :
_@-FF@ ~2—r2m () M—|~¢u;'.

Thus, if a function A is an eigenfunction of the operator ¢ w then the square of
the angular momertum with sign variesis its eigervalue:

¢

" M2 . M2

Now we cangoto nd eigenfunctionsof angular operators. First we nd them
for M 2. In other words, we needto nd solutions of the equation

M2 = V2. M2 = const

We have in spherical coordinate

@a @ 1 @a MZ o
@+ ctgu@+ m@+ —2 =0 (2.67)
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The equation for 2 may be solved by using separation of variables method. We

believe that
A )=TWOo(); (2.68)
and after @ g @ )
T T T © M
©W+ ©Ctgud_u+ mlp+ — T0=10

We multiply this expressionby sin® u(T©)i 1 and transfer all terms dependert only

on' to the right side:
siP pd®T  sinpcosudT = M2 1 d’©
+ —+ — = = - 2.
T de T du =2 KT i gge (269

The left-hand side dependsonly on 4, right { only on' , but they are equal. This
is only possibleif they equalto the sameconstart, which we denotedas °. After
that we get from (2.69) two independert equations connectedonly by separation
constart:

8
U ar Hmz T
E SiN“ H—— + SINPCOSH— + — SIN“ U T=0;
dpe du ~2
: @ (2.70)
© o -— .
T +°0=0:
We show that the solution of the secondequation has form
oC)=¢é" ; (2.71)

where! is someconstart. In fact,

© ' a i . 2 © 1 a
3—, ¢ =ie” =it 3—2 g =12
so
i 1°0+°0©=0;
from where

o — 12.

Let usturn to the equation for T(l) using the found °. Changethe variables
cosp = 3; (2.72)

then

si”fp= 1 codpu= 1j 3% sinpcosp=3 1j 32
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dT _dTd® _  dT P —dT
G Ea et L
L 3
ET_d P AT
a2 = ' du
!
p p 2 3 2
=i 1j 32 j 1i32dT+p—d—T =(1i32)dT'3dT

We substitute it all in (2.70):

' T dT’
1i 2% (i 32)@1 Sd_3 +
M T - .
p p dT M 2
122 1+ (1§ 2 P T =0
After collecting terms and dividing by (1 32) we obtain:
H 1
d?T dr " m2 12
(“3665‘?63+’3*175 T=0 (2.73)

This expressionis easyto recognizeso-calledequation of Legendre,the canonical
form of which is the following [11]:

2T T, 12
d i23d_+ 0(o+1)i1.— T=0
i

. 2
(1'3)W RE 32

The parameter M is free, soif we put

2
¥7=°P+1x

then we get exactly the sameequation. Solution of Legendreequation in this case

has the form . )
T(®) = apPs (3) + aqQo (3); (2.74)
where Po (3) is assaiated Legendrefunction of 1st kind;
Qi (]) is assaiated Legendrefunction of 2nd kind;
ap; ag are arbitrary constarts.

Index © is called degreeand * { order of Legendrefunctions. A priori they canbe
any constart complexnumbers. Basically, the argumen 3 canalsobe complex, but
becauseof (2.72) we are only interestedin the real valuein the interval 3 2 [j 1; 1].
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Now we can write the generalform of the eigenfunction of the angular momen-
tum. Substituting (2.71), (2.72) and (2.74) to (2.68), we have*?)

3" )= Yo (') = [apPe (cosp) + aqQe (cosp)] € : (2.75)

After this we nd the eigenfunction of the operator M,. Solve the equation
M,2 = M2 ; M, = const
In spherical coordinates we obtain

, a My
i|~%=Mz’=l =) — i a =

followin
’ a = @M=z gt (2.76)

where we denote
1

— MZ.
Comparing (2.75) and (2.76) we seethat eigenfunctionsof operator M 2 fully

contain eigenfunctions of the operator M,. No conditions were imposedon the
parameter !, therefore we suggest

1 =1-

and now this number is connectto the z-projection of the angular momertum.
Concerning eigervalues of operators M, and M 2, that

Mz=~5  M?%=-~2°(°+ 1) (2.77)

In passingwe note, that with accourt of this the equation (2.66) with operator
¢, takesthe following form:

¢ A+ + 1A= 0 (2.78)

Below we shall often meet with this form. )

Special functions Po (z) and Q- (z), composed Yo , are well known [11]
general, they de ned on whole complex plane z with cut along the real axis from
il to +1. Function Po (2) is single-valued in j1j zj < 2, and function Qo (2) {

42) Here® and ° are not tensor indexes. They are attributes refer to special functions and their
parameters.
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in regionjzj > 1[12]. The range of argumernts z = x = cosu 2 [j 1; +1], which we
are interesting in, just getson section, so we use expressions

1 l h 11/, 1 2 11/, 1 I
Po(x) = 5 €"%P (x +10) + € "Po (xi i0) =

H izo M 1

1 1+ x 1 X
= F jo%°+1;1i 1 ; 2.7
i(1i1) 1j x S R @.79)
h [
Qo (X) 11/4I el Wai= ZQ (X + |O) + e11/4IQ (X I IO) —
1/ ' N (°+1+ 1 . >
. CosWiuP, (X) j u P (X) ; (2.80)

- 2sinY, i(°i *+1)

wherex + i0, xj i0 are points on top and bottom boundary of section correspond-
ingly, i( x) is Gamma function, and so called hypergeometric function inside he
circle jzj < 1is de ned asrow [13]

® 2z, @@+ (+1)2,

° cC+1 2 (2.81)

F(® ;°;z)=1+

Sincethe gammafunction of the real argumert is real and, asis easily seenfrom
(2.81), hypergeometricfunction with real®, , ° and z is alsoreal, than Po (cosp,
given by the expression(2.79), will be real.

Suggestingthat ®, , ° in hypergeometric function are real, we believe that
1 and ° is real. The last, we get from (2.77), i.e. from physical considerations.
Howevwer, the "eld of real numbersis too "broad" and "dense" (has power of the
cortinuum). Is there a more speci ¢ framework for rangeof 1 and °? It exists.

Firstly, in order to eigenfunctionof operator M 2 was unambiguous, contin uousand
have continuous partial derivativeson the sphere(i.e. at u2 [0;%4, ' 2 [0;2%)), it
is necessarythat the number* and ° wereinteger [14], p. 125{126.
Secondly it is easyto seethat if in the Legendreequation make the substitution
°©=;°0; 1 weobtain
PO+ D=0+ 1)

i.e. initial equationsfor © and for j °%; 1 are the same. For this reasonit can
only be consideredpositive ©43).

Thirdly, in our physical appllcatlons index * in Po and Qo can be either
positive or negative as far as it is included in (2.73) in power 2. Physically this
meansa di®erert sign for the projection of angular momertum on axis z.

“3) If only we deal with integer °! Special caseis °=-1/2, when® and j °°; 1 are the same.
This solution for angular momentum may have special role for new type of "elds of motions (Rem.
by VD).
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Fourthly, functions Po (z) isequalto Oif * > © for integerst, © asit is
written in [14], pp. 148{149. It's like they do not exist, which is consistert with
the "physical" requiremert that the vector projection did not exceedits length. In
addition, it turns out that to ead value of ©, "xing modulus of angular momertum
M, corresponds 2° + 1 valuesof *, specifying value of z-projection. Indeed, if we
have a set of integer numbersfrom® = j°to! = +°, j.e.

I R M A I

the total amount of them is 2° + 1.

Theseare restrictions on the collection of the real values of quantum numbers
°© and !, if we proceed from the single-valueliness of wave function. They are
good con rmed by the description of the orbital motion of the electron in the
atom. Angular momertum M itself, corresponding to the orbital motion, usually
designatedas L. A positive integer © in this casecalled orbital or azimuthal
quantum number and designatedas|. So,

L™ jLj= P (1 + 1):

Integer number ! is called magnetic quantum number and is denotedas m. Con-
sequertly
LZ = ~m:

It should be particularly noted that when | and m are integer, the assciated
Legendre function of 2nd kind Q"(z) is not analytical, that can be seenfrom

(2.80*). Therefore, in (2.75) suggestedag =0 and thus used only asswiated
Legendre polynomials P (z), or simply Legende polynomials P(z) whenm = O.
On this baseso-calledspherial harmonics can be written

1
& P/™ (cosp) cosm’;

Y™ (k') =
) P™(cosp) sinm’;

or in complex numbers,
Y™ (') = P (cosp) €™

Spherical harmonics are single-valued and continuous on the sphere, as well as
constitute a complete orthonormal system. Therefore, any smooth function 2 ©
not necessarilyeigenfunction, could be expressedas a seriesof sphericalharmonics
in spherical coordinates.

However, whether the requiremert of single-valuednessof the wave function
the law? At textb ooks on quantum medianics it is held as part of the so-called

standard conditions imposedon WF. If you look for its origins, it found that to a

44) sin1Y, in the denominator with * = m make elemerts of the row innite.
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certain extent, it follows from the theorist's desireto securea peaceful,simpli ed
work. In general,it doesnot correct, becausethe last argumert in physics should
be an experience, that is obsenation. As we know, the densities of dynamic
variables and obsenablesexpressedn terms of quadmatic combination of WF. We
have the right to demand the unambiguity of the obsenables (and of densities).
They are quadratic on the wave function. This meansthat the wave function 2 is
allowed to have onekind of ambiguity { ambiguity of the sign (plus or minus)*®).
From the expression(2.71) it followsthat in order to densitieshasmertioned-above
properties with rotation by ' to full circle, it is necessarythat ! was integer or
half-integer. Indeed, the turn of 2%returns systemto its original orientation, so
it is logical to require that densitiesof dynamic variables return to their previous
values. From the relation

( v 16
Y= QY §2Yn).
ot (824 — € € '
i é = dIY §824n+1=2)
we can nd, that
M 111
1=8n or 1 =2§ n+E ; n=20;,1,2,3;:::: (2.82)

The presenceof half-integer indexesin the P;, Qi distinguishesthe formalism
of QTFM from traditional quantum theory. And not only that P., Qi are called

%) 1t is equivalent to two states with similar modules, but with phasesdi®ering by ¥ when
complex numbers are used.
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not assaiated polynomials, but assaiated Legendrefunctions. It is not so simple

to imagine an object that whenyou turn on the 2%would not be identical to itself.

But let's not forget that we are not dealing with objects but with movemert. In

view of this valuable guidance come up with a macroscopicexample in which a

cyclic processperformed for two turns, is relatively easy Suppose, for example,

watches, lying dial up at the North Pole of the Earth, at somemomert show the

hour hand at the sun. We know that one day the hour hand makestwo complete

revolutions. Thus, it makesonerotation per 12 hours. When sheshaws on the sun

next time? The answer "after revolution" is incorrect. Taking into accourt the

Earth's rotation around its axis, we passto conclusionthat it will happenthrough

2 turns, i.e. after 24 hours*®. You canthink of examplesrelated to topology. For

example,a Moebius strip, along of which the ant creeps.How you know, to come

to the samepoint, he will have to go through the tape twice. Or an example of a

tube coiled in a double-turn spiral. Ant penetrated into one end, come out from
the other end only after two "turns" around the axis of the spiral.

Angular momertum (both or-

bital and spin) have a remark-

able property. We have al-

ready mentioned about it in sec-

tion 2.8. Since the operator

M depends only on the angles

(i,e. on orientation in space)

and does not depend on the

distances, its eigenfunction are

only angle variables function.

And since in most cases the

character of the physical pro-

cessesloesnot dependon orien-

tation of axes,it givesthe oppor-

tunity to introduce united sys-

tem of the angles, ' at the

sametime for di®eren reference

Figure 2.7: Unied system of referenceof angles systems, the origins of which

may not be coincided. For ex-

ample, for intrinsic referenceframes of seweral (or many) identical particles. Or

for the certer of massof an atom, in which the electron undergoes orbital move-

ment, and for the electron intrinsic referencesystemwhoseorigin moveswith him

around the core*”). This situation just is displayed in Fig. 2.7. In the certer of

massof the atom (i.e. practically in the nucleus) situated Cartesian rectangular

4) |n this caseturns of hour hand considered relatively to dial (or relative to the Earth, on
which clock rests).

47) In some casesthe orientation of axes may not be permanert, but it is included in the
coordinate transformation (see. following description of the Zeeman e®ect).
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system of coordinates x% y% z° and assaiated with it spherical system of coordi-
natesr® ;' . The intrinsic referenceframe of electron has another rectangular
Cartesian CS x; y; z and assaiated with it spherical CSr; ;' . Obviously, if the
axis of Cartesian CS are parallel, the anglesy, ' setthe samedirection n in both
spherical CS. Formally this meansthat the orbital and spin WF (partial “elds of
motion) depend on the samepair of anglesy, ' .

As already mertioned, the variant with integer © = | intensively exploited in
the convertional quantum theory for the description of the orbital angular momen-
tum. The half-integer valuesof © were not in demandin the traditional approad.
Historically had occured, that for fractional angular momertum in the own frame
of referencecalled as spin, the quite another description was found.

2.11 Spin

In theoretical physicsthere are conceptsthat, in addition to their direct "techni-
cal" role in solution of challengesfacing them, they had an impact on the formation
of a certain style of thinking and habits to useready-maderecipes. This e®ecton
the physicists could be either positive or negative for di®erent concepts. Spin also
concernsto such “crucial" conceptsand played a role in physics, which is other
than rock will not name. Evenin historical sequenceof human actions around the
formation of its idea are not everything turned out asit should have been.

Imagine the beginning of the 20-iesof XX certury. Do not have an explanation
for the periodic law of the chemical elemerts, but there are already atomic Bohr's
theory, and physicists had learnt to calculate much about spectral lines. Not only
the main series,but many details of their multiplet structure obtained quartitativ e
con rmation. Shortly before that, in 1919, when trying to explain splitting of
spectral linesin the Zeemane®ect®) A. Lande using their vector model found that
in alkali metal atoms optical electron undergoes movemen with three degreesof
freedom[15], p. 384. This meart that angular momertum of orbital motion does
not coincide with the direction of the full angular momertum, i.e. there is some
additional angular momertum. Lande attributed his to skeleton of atom, i.e. to
nucleus and the other electrons. In further studies (A. Sohmmerfeld, A. Lande)
it becameclear that for additional angular momertum should be attributed the
value 1=2 (in units ~). But the most surprising it wasthat the gyromagnetic ratio
of this degreeof freedom was be 2 times more than for the orbital motion! It
breaks habitual (classical)idea about the current which is carried by the charge,
and about magnetic eld, generatedat the sametime.

Further relay-race baton in attempts to look into doublet structure of spectral
lines was transferred to V. Pauli. On the one hand, in 1923 he managedto sum-
marize the analysis of terms, done by Lande, and probably he has already begun
dewelop a vagueidea of what is lacking to explain them. In one article, published

48) Atom in a magnetic “eld.
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in 1925, he writes: "... the doublet structure of spectra of alkali metals, as well
aswithdrawal from the Larmor theorem occur due to the characteristic ambiguity
of quantum properties of electron, which can not be described classically”. On
the other hand, he devoted much time to the attempts of explanation the periodic
table of chemical elemens, and beganto suspect that betweenthese two issues
must be a closeconnection.

At the beginning of 1925 R. Kronig asked to Pauli
with proposal to consider rotation of electron itself
as responsible for the mysterious degreeof freedom.
However, Pauli did not support this idea. Later Kro-
nig attempted to discussyour model with Heiserberg,
Bohr and Kramers, but his initiativ e has met with
criticism and cold attitude. As a result, Kronig de-
cided not to publish the idea of spinning electron. In
the summer of 1925J. Uhlenbedk and S. Goudsmit
appealed to P. Ehrenfest, asking them to print a
small note in "Naturwissenscaften". They expressed
the sameidea of intrinsic angular momertum of the
electron. Unlike Kronig opponerts Ehrenfest imme-
diately sen their work in the magazine. Later, when
Uhlenbed realized that classicalmodel of the mag-
netic momert of spinning electron don't agree with
the theory of relativit y, he wanted to take badk the
Wolfgang Pauli article. Ehrenfest calmed him: "Y ou are both young
enoughto a®ordto do somethingstupid.” Anyway it
was too late to cancelanything.

That's how the idea of rotating electron was releasedfrom the pagesof a
physical magazine. Howewer, she had not to live long. Heiserberg and Bohr
reacted to note well tolerated, but Pauli { skeptical. He, mearwhile, published
article "On the relationship between the Tling of atomic shells in atoms with
complex structure of eld”, in which he formulated his exclusion principle. And
asit is written in [15], pp. 389, "he nally cameto the idea of "spin" as of new
quantum characteristics of the particle, not amenableto classicaldescription. This
view becamegenerally accepted.”

What is this common point of view, partly seenfrom the words of Pauli:
"After a short period of confusion causedby the temporary restriction of clarity,
there was reached the generalagreemen, which consistsin replacing the obvious
pictures by abstract mathematical symbols, such as A. This is especially concerns
for the picture of rotation, which was replaced by mathematical characteristics
of represenations of the rotation group in three-dimensional space" [16]. Two
yearslater (in 1927)to take accourt of the spin V. Pauli o®eredown modi cation
of Schrodinger equation. For the electron with momertum p, which located in
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electromagnetic”eld with potential A* = (©;A), his equation looks like

@ Ny . H/\

3 ,
1 e 2 e~
= — i =A 1
om IﬁlC i

2mc

(%4CH ) + €01 ; (2.83)

where H" is the Hamilton operator (Hamiltonian), % are three Pauli matrices, H
is the magnetic eld strength, | is identity matrix. All matrices both |, and %,
¥, Y5 have size2£ 2. Spin enters to the secondterm in Hamiltonian, that up to a
constart factor equal to the scalar product of spin to the magnetic eld strength:

e~ e
i —(3CH)=j —(8¢H):
'2mc(4 ) 'mc( )

Consequetly, the spin operator is unequivocally determined by the Pauli matrices:
A ! A !
- 01 -
§X:_?/4(= : Qy:_?/yz

- 0 ji
2 2 10 2

2 i o
A

&= Y= — 1o 2.84

Z—EQ—E Oill ()

For such equation as (2.83), it should correspond no longer one-compnert but
two-componert wave function-spinor

A !
As(r;t
A1t = ~1( )

Az(l’ ;t)

Unlik e scalar WF of QTFM, which remainsinvariant when changing the IRF,
spinor-function should be transformed in a special way in transitions between
referencesystems. However, Pauli equation, being simply "spin" adaptation of
non-relativistic, by nature, Schrodinger equation is non-relativistic itself. In 1928
P. Dirac deduced relativistic equation, describing the electron. In it the wave
function 2 is 4-componert (so called bispinor), and three Pauli matrices % with
dimensions2 £ 2 grown up to 4 Dirac matrices °" with size4£ 4:

i~"@2 i me@ = O (2.85)

Sourcein the derivation was the relativistic Klein{Gordon{F ock equation, and
matrix character remained asin the Pauli equation. Dimensions of matrices and
wave functions increased,so needlessto remind that bulkiness of description was
increased. Nevertheless, it was a big step forward. Equation gave the correct
value of the spin and becamethe starting point for the emergenceof the concept
of antiparticles. It was so successfulthat in currently, with its help describe the
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motion of massiwe leptons. But apart direct application it has created a new
methad, comprising: if only in the mathematical formalism is not enoughdegreesof
freedom, then let increasethe number of componerts of wave function. Of course,
in this case"for bundles" of the equation we have to dewvelop new matrix of the
operators. While this method wasapplied to a speci ¢ problem, it had excuse.But

gradually by his example theorists have begun to approadc to the description of
what you want "internal" degreesof freedomonly through increasingthe number
of componert of the wave function and the use of symmetry methods described
with using group theory. Soit waswith the strong and the weak isotopic spins, as
well aswith number of other quantum numbers. Method of increasingof dimension
followed by introduction of special symmetries beganto claim to be a monopoly
of "theory of everything". As at the beginning of the epic with spin all this { with

damageto clarity, that is to physical interpretation. Sud processdisconnected
formal description of objects of microcosm, so now is the actual task of reverse
nature { a theoretical uni c ation of elds and particles. Physicists even thought

up the name for such hypothetical theory { the Great Uni c ation Theory (GUT) .

Unfortunately, it seemsthem are still in the form of some universal symmetry,

which will include all found symmetries of lower order and which may be found in

the near future!

In the previoussection2.10we obtained quantum mecanical description of the
angular momertum for both integer and half-integer values of it. Moreover, the
frame of referenceis not speci ed, i.e. it is suitable for the description of orbital
motion and for proper rotation. Two di®erencescomparedto the corvertional
guantum theory were usedin initial premises. This is consideration of elds of
motion (wave functions &) in intrinsic referencesystem due to the application of
the principle of relativit y, and also permissionfor WF to have two-valuednessof
type 82, The approadc takenin Section 2.10, makesno formal distinction in the
description of angular momertum in di®erert framesof reference.This meansthat
the spin still is the angular momertum assaiated with rotational motion, but the
"nonclassicalambiguity” can be forgotten. It remainsthe only di®erenceof (half-
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integer!) spin from the orbital angular momertum: to ensurethat during rotation
return to the original state (i.e. coincide with itself), a systemwith half-integer
spin should turn not on the 2% but on 4% When turning on 2%phaseof the wave
function is changedto ¥4 i.e. WF changessign. Therefore at current orientation
in spaceand at "physically identical” orientations, which di®er by integer number
of turns by 2 systemwith fractional spin can meet us both in phaseA, and in
phaseA+ ¥, i.e. the number of its statesis doubled. Note that this duality can
not serve asan argumert in favor of the irreducibilit y e®ectto the classicalmotion
(to that point soloved Pauli) becauseobsenablesstill remain unambiguous*®:

WC(IP )= AP 2 B

Now, from a distanceof almosta certury and, mostimportantly, with a simpler
and more obvious description of the spin, we can ask the question: how much
was justi ed those "general agreemett’, which direct physicsto path of refusal
of obviousness? It seemsthat the main role in its adoption played not so much
"ambiguity" of electron wave function as how much the concept of wave-particle
duality. In arsenal of theorists there was no another waves, i.e. another wave
functions besidesde Broglie ones! And as it is known, they take place only in
translational movemert. In intrinsic referenceframe of corpusclethey are absen,
becausein it there is no momertum.

Nevertheless,real waves? carry this ad-
ditional angular momertum and produce ef-
fects assaiated with them. The usual plane
wave corresponding to translational motion
with constart velocity is somehav addition-
ally twisted. The use of two or more WF
componert allowsto accourt this "t wist" in
the external system of reference. Fig. 2.8
using conditional analogy illustrates the dif-
ferencein describingthe motion of a particle
with spin in convertional quantum theory
(@) andin QTFM (b). As intrinsic reference
system is not available for the rst theory,
it primarily givesthe nished twisted wave
in the external system, about of which the
mass cernter of the object moves. For the
second{ QTFM { there are no restrictions
in the selectionof referencesystem, soit can
show both simple “elds of movemen A, A {
translational and rotational { individually,
and the resulting eld of motion (superposi-
tion) @ = AAin an external referenceframe.

Figure 2.8: The di®erencein descrip-
tion of angular momertum in the con-
vertional quantum theory (a) and in
QTFM (b)

) Recall that all observed are determined by quadratic on @ combination.
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Now it's time to return to the description of the angular momertum of the
“eld of movemernt, initiated and completed in the previous sections. There we
noted that in the caseof the orbital motion of an electronin an atom indices®, t,
identi ed with quantum numbers| and m, take integer values. This forcesin the
decision(2.75) to useonly afunction P™ (cosu) asthe QI (cosp) is not analytic.
In the caseof half-integer ©, *, typical for spins, the situation is di®eren. Now
Q () may well have a nite value Here are someuseful relations for half-integer
valuesof the indices?, ° [11]:

r .u 1ﬂ 5
O122 - [6) + = . .
Ps*(cosp) 1/4sinu¢cos > Mo (2.86)
r 5 2 H lﬂ .
i 1=2 - i 04 = . .
Pd *“*(cosp) 1/4sinu¢m sin > VR (2.87)
r ‘U q
Ya 1 :
1=2 = H o] - .
Qa7?(cosp) = j >ein utl:sm + 5 Mo (2.88)
r— ‘U i
ol Ya 2 1 °
Qz‘) 1=2 (COSp.) = m ¢'20T1 COS 0+ E |V - (289)

Based on them for the important caseof spin 1=2, you can get the next set of
independen functions (given without normalizing factors):

Ya(') = %el_ 2 and/or Ya (') =i Psnn smue'— 2. (2.90)
(') = P Sin pe =2 andlor ¥ (k') = pC(s)iSnup o i=2

Note that herewe usethe notation ¥ais already just for spin “eld of motion®9.
Functions % are destined to spin oriented upwards the z-axis, and % { to spin
down. Peculiarities at p= 0 and p= ¥%in the rst an|§1 fourth functions have not
fatal character: in the calculation of the obsenables( sm u)' 2 = sini !y reduced
with sinpin expressionfor the integral elemert of volumer 2 sin udr dud' . Though,
to betoo fastidious, you canonly usethe secondand third functions, or their linear
combination.

To conclude this section we give a relation, which connectsthe angular mo-
mentum with suc operation of vector analysis as rotor. Intuitiv ely is clear, that
the presenceof vortex®?) in a "eld hasto be somethingto do with the rotation,
and the last characterized primarily by angular momertum. On the other hand,

%0) Since there are no Pauli matrices in the formalism of QTFM.
*1) Roto (lat.) { rotate [17], p. 400.
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the operation of rotor is applicable to vector functions, but all wave functions in
the formalism of QTFM are scalar. However, let try to apply this operation to the
product (Ar):

rot (Ar) " r £ (Ar) = A[_{%_ﬁﬁ(r AEr=irerA:
=0

From hereit is easyto seethat
M A= i~rot (Ar) = i~r £ (Ar): (2.91)

This relation can help to qualitativ ely imagine the eld of rotary motion, aswell as
the di®erencebetween elds with an integer and half-integer angular momertums.
Imagine yourself in the certer of the coordinate system, from where the radius
vector r begins. Let the WF A dened in the spacearound. Then all points in
spacecan be characterized by the product of (Ar). Curious to seewhat happens
when radius vector make turns. If the wave function A is real or has a “xed
phaseover the ertire space(which doesnot fundamental distinguish of it from the
real value) it can not have angular momertum. The angular momertum appears
when by any of the anglesthere is a monotonic change of the phaseof A. For
simplicity we can assumethat the phaseof the “eld A is changedwhen turning in
the azimuthal plane in which we measureangle' . Also for simplicity, neglect by
modulus of A, assumingA = exp(iM ;' ). Complexity of A leadsto the fact that
the mapping
rooj! Ar

corvert the usual spaceinto the spacewith the number of measuremets, 2-fold
great. If in such spacethere is vortex®?), it is equivalert to the existenceof angular
momenrtum, i.e. "material" rotation. Howewer, all this does not end there. On
the basis of everyday experience,acquired in ordinary space"r", we imagine the
vortex like a circular motion when at turn on ¢' = 2%radians, we again nd
ourselesin the samepoint from which beganthis turnover. In the spaceof "Ar"
casemay be di®erent. A priori it can imagine any rate of phasechanging by the
angle' , but the Nature with her requiremert of reality of obsenableshas limited
its range by two rows One relates to the integer values of angular momertum,
another to a half-integer. Accordingly, in the spaceof " Ar " may be only two types
of vortices. Phaseof rst changesby exactly 2% when turning r at 2%radians,
the phaseof secondat that changesonly on the ¥4 i.e. by a half of period. Full
whirlwind asit consistsof two coils ®® and to changeits phaseto a full period (for

%2) That is possibleto construct a closedloop, at walk around of which the phasemonotonically
changes.

%3) This is clearly explained in two times higher gyromagnetic ratio than in orbital movemert:
two coils of current loop create magnetic eld, 2 times more intense than it doesone coil of this
current.
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a full passof it "length"), it is necessaryto turn r on two turns. In normal space
whenrotated by ¢ ' = 2%the initial position of r will coincidewith the nal, but
in the space"Ar" doubling dimension allows not intersect the individual turns of
the vortex.

2.12 Ab out angular momentum of eld with imaginary
density of momen tum

One of the scandalousdepartures from the tradition of quantum medanics
in the book is to introduce by Postulate IV of complex densities for dynamic
variables. Field of motion with imaginary momertum density will be considered
in Chapter ??, wherethe term m2c? in the equation of masssurfacewill interpret as
the squareof the density in intrinsic referenceframe and thus explain the formation
of the massterm in the equation for the eld. In the seard to be introduced non-
Hermitian momertum operator ¢ = | ~r , having imaginary eigervalues. Value
m2c? comesas action of j¢j2 on the “eld. In general,to nd all partial “elds of
motion included in the general eld 2, the uni ed dynamic equation will drawn
up. This section, which will be claimed only in the Chapter ??, we nevertheless
placed here, where it is not yet faded words on angular momertum. It will sere
as an uncorvertional addition to the well-known theory of angular momertum in
the quantum medanics.

To be consistert when consideringthe dynamics of the "eld with an imaginary
momertum, we should not limit oursehesby squareof momertum { sourceof mass
term. It must take into accourt the imaginary character of the momertum density
in all statemerts relating to momertum. One of such operators is the operator of
angular momertum M . If the generaleld @ has completely imaginary density
of momerntum and therefore we make replacemert

p=ii~r !  @G=i-r;
formally, we have to do it and in the operator of angular momertum:
M=re£p=iji~regr ! MO%%=req=j~rer: (2.92)

The rst thing that comesto mind is the think that the momertum created by
imaginary momerntum density seemsalsoto beimaginary. Consequetly, its square
must be negative. However, where guarartee that then he will be obsened as a
physical quartity of something behaving in a new way®¥? We are accustomed
to thinking angular momertum as something that has a well-de ned obsenable
properties. That's now it would like to while dealing with the usual (real) angular

%) For example, an imaginary momentum modulus q perceived as a mass term mc, i.e. as
a physical quantit y, which occupiesin the equation and (especially!) in the experiment a place
di®erert from that takesa normal momentum (seechap. ??).
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momertum. Is it possibleto organizethis? It turns out that you can. Recall that
the partial elds of motion, included in the 2, are dynamically independert. So,
the “eld of rotary motion can, in turn, "move out of phase" on the ¥&2 relative
to the radial "eld having an imaginary momertum density. Then his density of
momertum becomesreal. But there is another possibility! In that sectionwe will
examine whether it is possibleto get a positive square of the angular momertum
even when the momertum density of rotational eld is imaginary. "Nongroup"
guantum theory of angular momertum was expounded above (see. Section 2.10).
Note the placeswhere possiblenon-trivial conclusions.

After changingp = j i~r by ¢ = j ~r the componerts of the angular momen-
tum operator with an imaginary momertum in Cartesian system of coordinates
will be asfollows:

M T M l
0— . @ @ = ~ in' — ! @ :
MO = ) Vg | z@ﬂ usm @+ cotanpcos @
. @ @ .. @ ., @
MO= ~uz@| x@ﬂ ~ i cos @+ cotanpsin @ (2.93)
MP= i~ A4
‘ @ @ @

As you can see,there no an imaginary unit i. For operator of square of angular
momertum % we obtain

— + cotan = ~2¢ 2.94
Ha @1 sinfp @ 2 a (2.94)

If %4is eigenfunction for operator l\?f02
M Py= M Py

55) Which can be represerted as two-fold serial application of M °.
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then we get equation

@ @ 1 @% M® M@
@+ cotanu@+ sinzu@z' —%=0 () ¢y Y —
which have the opposite sign of the last term in comparisonwith the corresponding
"normal” equation. It allows separation of the variables, and, as a result, obtain

two equationsfor the partial elds T(y), ©(' ), which form %= T®©:

8 A !

Y%= 0; (2.95)

L, T dT ME
% Sin? i—— + SINHCOSU—— + | —smzm ° T=0;
dpe du ~2
3 (2.96)
o
T +°0=0:
After substitution cosp = 3 the rst equation becomes
A !
d2T dT M ® °
. 32 : : . -
Comparing it with the canonical form of the Legendreequation
®°T  _ dT 12 -
(1i3Z)Wi23d—3+ °(°+ 1) 1; 32 T=0
we can nd following relation:
M ®
= i°C+ 1) (2.98)

~2

where?, in principle, can be any com-
plex number. Remenbering our wish
to explore the possibility of the exis-
tenceof the eld with the non-negative
square of the angular momertum, we
obtain the condition

. - 0f(O + .
Figure 2.9: To the solution of inequality i°C+1>0
2 .

°76i° which implies inequality

026 jo: (2.99)



2.12. ABOUT ANGULAR MOMENTUM AT IMA GINARY DENSITY 115

Fig. 2.9 illustrates the solution of inequality (2.99). It's clear that it is performed
only on the interval © 2 [j 1; 0], containing only three valuesthat are half-integer
or integer:

Recall that the needto operate with only half-integer or integer valuesof quantum
numbers of angular momertum assaiated with unambiguity of observableswhich
is one of the foundations of the theory (see. Section2.10). The values® = | 1 and
° = 0 on the edgesof segmem correspond to zero of the squaredangular momen-
tum, i.e. must be referred to spinless(scalar) eld. This follows from the relation

(2.98). Remaining most interesting half-integer value © = j 1=2 corresponds to
the M %with u q

M#_,1m1 L

2 "2 2 vy

This is equivalent to that, asif the angular momertum would equalsimply ~=2. We
seeksolutions with usual properties of the angular momertum, so we require that
“eld hastwo projections M 2 and they wereequalto M2= j ~=2and M0 = +~=2,
Notify from (2.97) that it takesplace at

After that we can nd necessaryNavefunctlons % For composing of them we need
spherical functions P§ Z(cosp), le 2(cosp). Following [18], functions Qo (2) are
undetermined When° +1 are mtegerand negative. Hence,function Q! ; 122(2) does
not exist for us. Furthermore, if © 8 * is integer number, but * is not integer, then
Imearly independen solutions of the Legendre equation are the functions Po (2)
and PJ (z) [18]. ThIS is preciselyour case. Solution should be expressedhrough
P!%,(cosp) and P/ 7 (cosp).
From section 2. 11take expressions

r

s -2(cosp) =

2 ¢cos }
Yasinp 2

r

2 1
— ¢_—— si =
Ysinp 2° + 1 ! 2

Pd “*(cosp) =
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After substitution © = j 1=2 in the rst of them we obtain
r
P (cosy) = - /‘;nu: (2.100)
Similar substitution in the secondexpressionleadsto uncertainty 0=0:
P! 7 (cosy) = 1/4;]“ Sin[§0++11:22)“]:
Indeed, by replacing® + 1=2 = °%we can seethat
r—
in(0
I|m Pa (cosp) = oO| . %s?npq:sm‘(’ 0%:
We got somewhatunexpected answer:
r
P! 5 (cosy) = ﬁl W (2.101)

Sudh passedo limit, all the morein the region of cut are "risky" work. Therefore,
to be assuredin result, we get it again, but with other way. For Ps (x) the following
integral represenation is correct [18]:

r
sin' 2 cosC + 3)tdt

P, (cospl) = :
(cosy) Yai( 3 1)0 (cost j cosp)'*1=2

\Iml

1°
O< u< ¥ Rel< >

After substitution © = j 1=2,1 = j 1=2 we get the sameresult (2.101):

_ r—

2 (sin )i 2 2 cos(0¢t)dt 2

Ye i(2) (costj cosy)®  Vsinp
0

.12

P/ .- (cosp) =

WL

When compared P,”Z; and P, =7, suddenly shocking fact is found: there no
symmetry between two stateswﬂh di®eren projection of the spin! Field consid-
erably changesgeometry when changing orientation of spin. Howewer, this is not
a reasonto reject similar solutions. Recall that a violation of spatial parity is a
long known fact®®). Standard Model reactsto it in their own way: it include left-

%) |n 1957 madam Wu (Wu Jiangxiong) experimentally con rmed prediction of Lee and Yang
about possibleviolation of the P-parity. Shefound that the number of ~-electrons °ying out from
sourcewith Co-60 in a magnetic eld is distributed asymmetrically with respect to the H (and,
respectively, to the direction of spins of parent nuclei).
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and right-handed fermions asymmetrically. The rst { as doublets, the second{
as singlets. We have di®erent formalism and this fact has more obvious interpre-
tation. Write the desiredfunctions without a constart multipliers, which can be
calculated with the appropriate normalization in speci ¢ task:

ei= 2 el =2
Y = P % = cpe (2.102)
sinp sinp
Here the rst function have to to describe the eld of rotation with angular mo-
mentum directed upward by z-axis, and the second{ down. The secondfunction is
questionablewith respectto its relevance,but the decisionwe will take later. Now
nally ched the correctnessof the assaiated Legendrefunction P, 7. We do this
through WF % obtained on the baseof it. We calculate the z-projection of the
angular momerntum, which it gives. In this casewe will usethe usual (Hermitian)
operator of the angular momertum. You know, we want to ched the presenceof
the "normal” angular momertym of the)eld ¥ . So,

||—2 ~ e||—2 ~
I\ﬁ3/='|~@ p—ue = L VA
NG sinp 2 sinp ‘27

Therefore, from the point of view of the given result the wave function for © =
1 = j 1=2is found correctly.

As for the two other valuesof ©, for which M @ = 0, their functions are easierto
‘nd. Sincethe questionis about spin 0 (sincethe squareof the angular momertum
is zero), then z- pro;ectlon can alsoonly be zero. Consequetly, order of Legendre
functions is* = 0. The functions Qo (z) at integer* do not exist, and Pol(z) is
reducedto the Legendrepolynomlal of 0-th degree,which is constart:

P2 (cosp) = PJ(cosp) ~ Po(cosp) = 1:

Here we use property [18] ) .

Po (2) = P, o, 1(2):
Becausethere are no dependencefrom por from ' there is no the eld of rotation
too. That meansit is equal to a constart. However, formally degree® = j 1; 0
should be usefulto clarify the type of the radial wave function, which always goes
in compary with angular function.

So, let's summarize. Firstly, we found that eld of movemert with imaginary
momertum density can has a real angular momertum. Secondly nontrivial value
of the momert in this eld liesin the very narrow limits. It may be only 1=2. This
result may be very important. Can it contains clue of those experimental fact that
all fundamertal fermions have spins only 1=2 ?! Then it automatically con rms
the validity of our Postulate IV that some dynamic variables can be complex.
However, we have not yet looked at someother details related to the topic of this
section. For example, such as quadratic integrability of eld of motion. They are
examinedin sectionsof Chapter ??.
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2.13 Equation for dynamics of elds of motion

In QTFM the "eld of motion aswell asthe wave function in quantum medanics,
completely de nes the state and behavior of an object in betweenmeasuremets.
In general,the "eld of motion 2 is not constart, soin order to know not only the
wave function 2, but its behavior around the space-timepoint x" that's why you
needto know alsoits derivatives. Usually derivativesfrom the 2 alsoare functions
from &

@a

@ =f(®, @ W

If this applies not just to the abstract mathematical function, but to the eld of
movemert, it gives possibility to write the di®ererial equations, determining the
dynamics of the latter. Supposethat the rst derivative of 2 on time is not equal
to 0. In order to principle of superposition of states performs, it is necessarythat
it be expressedinearly in terms of 8 This meansthat we have a linear equation
relating the rst derivative of wave function and WF itself.

As it is known, in gquantum medanics operators correspond to the physical
guartities. Let us seewhat dynamic variable gives a di®ereriation of the wave
function by time:

1@ _ fa

@a:(_:@_

At the sametime we realize that for the presen our operator is found with com-
pletenessup to a constart dimensional factor. To specify it, let resort to trick
which we usedin section2.9. As it is known, the plane wave (2.50) correspondsto
free movemert of the object in the lack of interaction. We di®ereriate it by x°:

=f1® andsoon. (2.103)

n (0] ;
107, giEtipn= - 1B,

c@ ~C
From this follows that @
i~— = E?2:
@

Combining this with the equation for the eigervalues
Ea = E2;
we nd that we are dealing with the energy operator:

. @ _ A,
|@—I‘:“.

If we will ignore the speci ¢ type of object (plane wave) and instead operator of
energyof free movemert will usethe total energyoperator H" (Hamilton operator,
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the Hamiltonian), taking into accourt also possibleinteractions, we will get some
generalform of the wave equation

.~g= Ag .
g = H (2.104)

Since we have not yet made any simplifying assumptions,then in sud form,
as in (2.104), the equation may or may not be relativistic. It all depends on
the Hamiltonian. The equation should give the relationship betweenthe spatial
and temporal componerts of the dynamic variables, becauseapart from energy
operator it should have other operators. If on the basisof relativistic equations of
masssurface (2.49) expressenergyin the form of a seriesin powers of momertum

P p? p? pd
— 2 2~2 1 2 & Lo
E m2c* + p2c /4mc+2m. 8m3c2+16m5c4""’

(2.105)

take from it only the secondmember p?=2m, corresponding to the kinetic enemy,
and add the term of generalform U(r) asa potential enemy, then after passingto
the quantum form accordingto the correspondenceprinciple of Bohr we obtain

@ ﬁ+ O(r) a:
@ 2m
Substituting momertum operator in patent form (2.51), we arrive to Schrodinger
equation (1926)
@ 2
i~— = =—¢2 + U(r)?; 2.106
a - om (r) (2.106)
where ¢ is Laplace operator (Laplacian) (2.21). This equation has becomeex-
tremely popular in quantum medanics. However, it is not hard guessthat cutting
of series(2.105) would lead to the fact that the Schrodinger equation is no longer
relativistic. For this reasonit is not suitable for quantum theory of elds of motion.
It is obvious that asthe initial relation to output dynamics equation it should
be taken fully relativistic equation, and only then Bohr correspondenceprinciple
must be applied to it. Not necessarilyeverything must be attached to the rst
derivative with respect to time, as we did at the beginning of this section. The
arti cialit y of this claim is not in doubt becauseNature is not obligedto wait upon
us sothat all details of our theories was the simplest.
At most universal equation of relativistic mecanics of free motion is the equa-
tion of massshell (2.49):
E2
= p? = m?cZ:
Besides,it alsoincludestemporal and spatial componerts of 4-momenum. There-
fore, we can try to apply the principle of correspondencedirectly to him. If we
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replace physical quartities by operators and substitute the wave function 2, then
we get the Klein { Gordon { Fock equation (KGF)

22 1 @ 22
@@a+m~2a=o () gchiq:a +m~2

It was obtained in 1926 by three authors independertly 3. Just on its basis
P. Dirac receiwe his equation (2.85) for the eld of spin 1=2 in 1928. At that time
physicists believe to great importance that the equation was formulated for the
“rst temporal derivative of the "eld function. This sav as the only way to add
dynamics to the equation, leaving at the sametime de nitiv e role of the eld 2.
Dirac was able to combine these two requiremerts, but at the cost of increasing
the number of component of WF. Future quantum theory went by that path and
Klein { Gordon { Fock equation with its scalar wave function fell to their lot to
describe elds with spin s = 0 only, for which until recertly was not aware of any
elemenary particles®®.

a = (2.107)

In fact, if you think about it, necessiy to use
the equation with the rst derivative with respect
to time looks naive. It's like we imposeby force
to pendulum the equation with the rst deriva-
tive. Changing of WF, i.e. "physical" temporal
ewlution of states can be provided by derivative
of any order. The equation (2.107) demonstrates
it. In this casewe are simply studying a physical
system, about which we know only relationship for
the secondderivative. Their equation (2.107) sets
them. From that the systemis not getting bet-
ter or worse. We just know about it only what
we know. Let us assumethat we are not known

the rst derivative. This should not embarrass us, becauseit, in principle, can
be found through the integral of the secondderivative. Just why it is necessary
for us, if not part of the equation? What nontrivial give it to us on the part
of obsenation? As for the linearity of the equation neededfor that there was a
superposition of states, then it take place there. In the Klein { Gordon { Fock
equation all derivativesand the eld 2 itself included aslinear.

Recall that in cortrast to the corvertional quantum theory, QTFM operates
with scalar elds of motion with their essetial property of superposition. It al-

5) In responseto the frequertly arisen question about authorship of the equation we quote
from [19]: "The equation ...are often called the Klein { Gordon, with indication of work by
B. Gordon [Z. Phyz. 1926. 40,117]. A comparison of the volumes of magazines,which published
the works of Fock and Gordon, shows that the work by Fock came earlier. In addition, it has
more fundamental character".

%8) Discovery of Higgs bosonin 2012, which has no spin in simplest case,may possibly change
the situation.
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lows you give to eld @ various partial composition and calculate corresponding
dynamic variables. In the section 2.11 have beenshown that the half-integer an-
gular momertum can also be described by scalar WF. Thus, we have every reason
to take the Klein { Gordon { Fock equation asthe dynamic equation of "elds of
motion. Add: as generl equation, becauseboth the initial thesesin derivation
(equation of mass surface and Bohr's correspondence principle) suitable for all
material!

It was stated above that in terms of the physical content the mathematical
apparatus of QTFM is formulated for densities. In this case,Klein { Gordon {
Fock equationis equivalent to the equation for the density of squared4-momertum
(up to a constart factor)

2
22@@s + Ta — g

Howevwer, for the sake of brevity, we will still usethe traditional recording (2.107)
of equation for dynamics of elds of motion, i.e. we will reduce the left wave
function.

2.14 Interaction

In general mechanics, and particularly in quantum medanics interaction of
object with something external is always assaiated with reaction (response) of
the object to this interaction. Thus, material body with massm reacts to the
applied force F by acceleration

F

A= —:
m

We can say that there appears an additional motion causedby external force.
Similarly, in the formalism of QTFM when external in°uence takesplace, then in
composition of "eld 2 an additional partial "eld of motion f arises,which is called
“eld of reaction to external action or eld of respnse For example,if a free eld
has the form 2 = A, then following the Postulate V, under external in°uence it
will look like

a = Af:

External in°uences can be from a variety of sources,di®ering not only by coor-
dinates, but also by a number of physical characteristics. It is obvious that the
expressionfor “eld of reactionf must include, amongother things, the samevalues
that characterize interaction. So,
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if the "eld 2 has electric charge Q and electromagnetic
potential A" act to it, then the next expressiontakes
place for eld of reaction f :

1_.Q1 _ _in_
pf—.EAf =) @f—~—CAf.

(Postulate VI)

With the known characteristics of eld @ and of external action substitution of
wave function into equation makes possibleto nd a solution taking into accourt
the interaction. To be speci ¢, let we solve the Klein { Gordon { Fock equation,
then the sequenceof main expressionss following:

@@ (A1) + "CAf = o,

- < ~ m2c? .
(@@ A + (@@ F)A+ 2(@A(@f)+ —5-Af = 0;
: B 2 f
X iQ, _~ .1 m?c2 Q v x|
(@B A +2—(@AA'f + —-i S;AA Af =0

It is easyto seethat f can be reduced. This is common property of formalism:
“eld of reaction is always reduced, leaving its own numbersin equation. Further,
knowing the speci ¢ form of the potential A", from the remaining equation

, Ho, 2 )l
@@ A+ 2%(@A)Al+ m~—2C2i S—CzAlAl A=0

we can nd WF A.
If we solve the right relation in the Postulate VI with respect to f, we obtain

f=fod® A ="C  f,= const (2.108)

then we cometo the conclusionthat f changesonly the phase® of “eld 2. Thus,
this method of accourting of interaction is an analogue of phasetransformations
in QFT.

In QFT there is a whole sciencefor input of di®eren types of interactions,
called as the theory of gauge elds. We will not give formula, similar to formulas
of Postulate VI for other typesof interactions that today consideredfundamental.
The fact that, asit will be shavn in Chapter ??, the so-calledweak and strong

%9) Modulus of wave function does not matter in this case,becausethen WF still normalized.
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interaction is not fundamental. As for the gravity, alongwith the electromagnetism
it relatesto the fundamertal interactions, but obsenation of results of action of
these two forces radically di®eren. To seethe conformity to quantum laws in
motion causedby gravity “eld with converntional strength, typical for astrophysical
objects, the right "measuremen” time ¢ should be order of millions or bhillions
years.

In conclusionof this sectionwe must make oneremark. Given here description
of the interaction is not only one possible. We demonstrate external interaction
created "directly" fundamental forceswith respect to the object. Mearwhile, if
the eld of movemert consistsof seweral partial elds of motion, then, as a rule,
they have interference. It will be discussedbelow, but herewe only note, that sud
interferencemay appear as interaction.

2.15 Current of eld density

In the section2.3 by meansof Postulate |1 weintro ducedthe de nition of density
of dynamic variable as a quadratic combination by eld:

le.a =a ”Ifa .

From generalconsiderationsit is clear that densitiesof physical quartities do not
have to remain unchanged. Their behavior is subject to the laws of speci ¢ dy-
namics, somefeatures of which can be found from the universal dynamic equation
of elds of movemert. In this sectionwe are interestedin the dynamics of density
of energy-momertum 4-vector p*, which itself appearsin the Klein { Gordon {
Fock equation. Let us write this equation and complex conjugated equation:
2
@@ + "a - 0

2
@@?a "+ m~2czan= 0:

Multiply the rst equation by 2 ®, and the second{ by the 2, then subtract the
secondfrom the rst. After we obtain

a'@@? i 2 @@2°= 0

or what is the same,
H 1 H
ae 1@ 1@
2 @' ' 2 @ !
Collect separately terms with temporal and spatial derivatives:
H 1
1Ml e
2 @2 ' @2

1
= 0:

+(a¢a Ui an¢a) =0
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Further make obvious identical transformations, in result of which we get:

u ol
1@7..@ @ || saraz;a%a =g (2.109)

2@ @' @

Notice that obtained relation is formally identical to the cortinuity equation for
4-momertum

—+r ¢ =0 — + divj = 0; 2.110
a i () a j ( )
if you put the componerts of its density j© = (%c;j ) equal correspondingly
.M o .
14— I~ aug-a@ . ‘:|_~a aP. abf,. a -
2 e Q' a j 2m( r . ra . (2.111)

Continuity equation for density of momertum in covariant form has record short

form:
@j =0 (2.112)

and besides .
.1 1~ a a
= @2i2@?2": (2.113)

We discusssomefeatures of %2 j and ' from
(2.111) and (2.113). It is easyto seethat from
(2.109) should not be a factor i~=m, but newver-
thelessit is. This is donefor two reasons.Firstly,
the relation (2.109) givesthe expressionin brack-
ets up to a constart factor, which further can be
selectedfrom physical considerations. Secondly it
is becauseof theseconsiderations,the substitution
of i~=m has allowed us to get i~? @23, that by
nature is density of 4-momertum divided by the
mass. And this is the current density of some-
thing dimensionlesswhich should be proportional
to the "quantit y" of the "eld in this point. In gen-
eral, the density of the eld current is equivalent
to current of density of the "eld.

With regard to the divider 2, its presenceis
explained by the fact that it compensatesunnecessarydoubling in the subtraction
from the complex quartity @ @2 the complex conjugate value®®, asit would be
without this factor:

aﬂ@a i a@at’:aﬂ@a i (a u@ja) o _ 2i¢|mfa°@ag:

80) Selection procedure for imaginary part of the value.
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As noted above, the componerts of the j* up to a factor of 1=m identical to
densitiesof 4-momertum Dy = i~2 @2, introducedearlier. However, the Dy is
not always real value. In somecasesit can lead to complex valuesof momertum.
However the density j* thanks to the syntax "cuts" the imaginary parts in the
result. The values’;| are alwaysreal values.

In physicsthere is old tradition to call quantities in contin uity equation (2.110)
as a density Y2and density of current (of °ow) j. The latter is often even called
the current, meaningthat it comesto the current density. We will also use this
terminology. For example,j" will be called the density of the 4-current or simply
current of eld { it all will depend on the cortext.

2.16 Interference of elds of motion. Observabilit y
principle
In drawing up the equation for speci ¢ task onething could give substartial aid.

Make it easierto understand what is at stake, considera special example. Let the
“eld of motion 2 consistsof two independert “elds of motion, i.e.

2 = AxP)AX);

where the “eld A(x?) is the plane wave with momertum p? and “eld A(x") is
the “eld of rotational motion. Substituting eld of motion 2 of this kind in the
dynamic equation(2.107)we obtain

(@@ AA+ (@@ A)A+ 2(@A) (@ A) + mjszA: o: (2.114)

As we know, the dynamic variables of elds of motion represened in the equation
by corresponding operators. When identical transformations of equation had per-
formed there had formed terms which relatively to di®erenial operation can be
divided into three types: pure, mixed and free. The rst type hasonly one eld
of motion under di®ereniation operator, the second{ two (and scalar product of
4-momentums of this “elds takes place), while the third do not has derivatives.
For example, in the equation (2.114) the rst and secondmemnbers are pure, the
third is mixed, and the fourth is free. If pure terms describe densities of squared
4-momertum of corresponding "pure” “elds®?), then mixed are densities of in-
terference of 4-momertum of elds, whose gradients are included in this mixed
term. By all indications the result of such interferenceis similar to interaction
(e.g., spin-orbital, spin-spin and soon). Of course,strictly speaking, it is already
jargon when we call interferenceis an interaction, but when we have to take into

1) It is necessaryto always keep in mind that if we talking about the physical content of

the equation, the expressionas a whole should be multiplied at the left by 2 °, then ead term
determines locally some density (seesection 2.3.)
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accourt the energy of any interactions, we do not complicate the picture with the
abundanceof titles. It makessenseto focus on the outcome of fenomena,and it
is simple { we are dealing with interaction. Its origin is the next question.

Formally, all of these menbers are entitled to be written in the equation and
to encumber it until the end of the solution. However, in practice it may be a
situation where this or those term may be discarded (equated to zero) due to its
unobservability According to the Postulates |11, obsenable values of dynamic
variables are averagedover a certain time ¢, characteristic for the "elds of motion.
In above mertioned examplethere is mixed term

1@@
Cz@@

Expression2~2(r A) ¢(r A) is doubled scalar product of ordinary (spatial) momen-
tums of “elds of motion A and A, describing their interference(interaction). Since
in this example the “eld of motion A(x%) is a plane wave, and the “eld A(x")
describesthe rotation, then the momertum p°= const has constart direction and
magnitude, but momertum p circulates around someaxis. It is obvious that the
scalar product of momertums of such two elds is oscillating, and in half the space
it hasthe opposite phase. Its integration both in spaceand in time givesO:

20@A(@A) = i (r A)er A)

e 2 'Ze? 777
pPep =i — dt AR [(r A) ¢(r A)] & = O;
<

t0 ¢=2

This leads to the fact that
in this example part of the
mixed product of 4-momerniums
of "elds A and A may be omit-
ted, leaving only the product of
time componerts:

o ax 2 @@

2@A@1 = 555"
We note that it is correctin par-
ticular the above described ex-
ample, whenonevector is a con-
stant and the other is rotate. If,

for example, both vectorsp®and p were either "xed or revolving, the result would
be quite di®eren. A particular exampleof this kind is the spin-orbital interaction.

Obviously, the "pure" expressiond @@ A)A and (@ @ A)A, which are describe
of squae of 4-momertum cannot be simplify in sameway, as far asthe square of
the vector (if vector exist) always positive and therefore obsenable. Thus, it is
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possibleto formulate something like a principle, sometimes helping to simplify
the equation: if "mixed" term in the equation gives O when averaged over the
spaceor the time characteristic for elds, it can be removed from the equation.
This provision is not a postulate, as we got it logically using Postulate 111 about
obsenables. It can be regardedsimply as a help tool in the practical work.

2.17 Electromagnetism plus gravity

No one seriously doubts today that the theory
of electrical and magnetic phenomenathat are pre-
serted to us as the theory of united electromagnetic
“eld is correct. Further, any physicist knows that
the whole theory of electromagnetismcomesto®?) the
four equations of J. C. Maxwell, which usually are
usedin the form [20]

div E = 4Yis; rotE = j }@
ca@

. 1 4Y,

divB = 0O; tB = ——+ —J;

iv ro c @ CJ

(2.115)
shaped by O. Heaviside in XIX certury. Later tensor
analysis gained a lot of popularity among physicists
with the advent of the theory of relativity. It was found, that strengthesE and
H = B= of electric and magnetic elds can be consideredas componerts of
antisymmetric tensor

James Clerk Maxwell

1
X Ey E;

0 E
F _%iEx 0 i Hz Hy E
i Ey H: 0 i Hx ,

i Ez i Hy Hy 0

o

which received the name tensor of electromagnetic eld. One of the conveniert
formulations of SRT is a 4-vector form. If you enter in theory 4-vector potential of
electromagnetic eld

L ¢
A" = 'A% AL AZ A% = (@ A);

62) Except for the answer why there are charges of two signs. We shall see,the formulation of
the question may be incorrect.
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sud, that

1@
E = E@i grad®©; H = rotA; (2.116)
then tensor of the electromagnetic eld will expressedas®®
Fo = @Ao i @Al: (2117)

Four Maxwell equations can be reducedto two equationsfor F» with the electro-
magnetic eld tensor. Thus, the secondand third equationsof (2.115) are brought
to the identity

@Fm + @Fo®+ @F®1 =0 (2118)
the rst and the fourth { to expression
10 4Y4
@F° =i ?‘j : (2.119)

In last relation it is meart summation over the repeated index °©. This rule for
summation over repeated (so-calledthe dummy) indexeshaslong beena generally
acceptedin theoretical physics (if not special merntion to ban this procedure).

The applicability of the theory of electromagnetism has no limits either in
spacescale, either in the speedrangefrom 0to ¢ = 3¢10'° cm=s. By this it owes
to its relativistic nature. Actually, relativistic featuresof spaceand time were set
from the properties of the electromagnetic eld. However, at scalescomparable
with the sizesof atoms and smaller the quantum laws intro duce their corrections
in the behavior of matter. But they do not changethe equations(2.115), but only
add someadditional featuresin the behavior of objects, including electromagnetic
“eld.

The relativistic theory one more fundamental interaction { gravity { was cre-
ated in the rst half of the XX certury. The General Theory of Relativity (GTR)
hasbecomeit. Thanks to clever hand of its author A. Einstein there hasbeenap-
plied very unusual for physicsof those years"geometric” approad for achievemert
of aim. Cometo it is possibly as follows. Theory of electromagnetismhas been
formulated in pseudo-euclidean("°at") Mink owski space-time,whereinthe coordi-
natesarewritten as4-vectorsx’ = (ct; r). As already mertioned in the section2.1
the following relation can be usedfor the scalar product of two 4-vectors:

ab=ab =a%P; acth:

The geometry of Mink owski spaceis a special caseof the Riemann geometry, under
which the scalar product a' b. formally may be written as

a®hp=goab: (2.120)

@
@1

) We use simpli'ed description for covariant derivative as @ = and for contravariant

derivative @ =

@1
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In this case,the Mink owski metric tensor g is supposedconstart over the ertire
space-timeand equal

O1 0O O 01
11 ,E@Oil 0 og
go =diag(1;j 11 i1 0 0 i1 0 : (2.121)
0O 0 0 1

As a result the scalar product (2.120) does not depend on coordinates, which
allows the geometry of such spacecalled "°at". However, in general Riemannian
geometry metric tensor can be coordinate function. We denoteit as

"0 = w0 (X9):

Obviously, that metric " can be expressedas the
sum of the Mink owski metric and certain "addition",
which dependson the coordinates [21]:

10 (X®) = go + hwe (x®):

Just addition hwo (x®) characterizes the degree of
"curvature" of 4-space,which should, according to
A. Einstein, characterizethe presenceof gravitational
“eld.
In everyday life theorists often named an electro-
magnetic eld asa vector. Among other things, this is
due to the fact that the basisfor its determination is
the potential A*, which hasthe properties of the vec-
tor in the 4-space.StrengthesE, H are obtained by
di®ereriating the A" by 4-coordinates (see(2.116)).
Similarly, the gravitational eld is called tensor, be- Albert Einstein
causeat the heart of its de nition lies the metric ten-
sor "o . The role of its intensities play the so-called Christo®el symbols®® also
obtained using by di®ereriiation by 4-coordinates, only not of 4-vector, but tensor
of 2-nd rank " :

1, , , ,
i® = > @ osu+ @ 134§ @0 ): (2.122)

It is easyto seethat at points of 4-space,wherein the addition to a °at metric
ho (x®) = 0 (i.e. where » = go ) we have | 8 = 0, i.e. absenceof tensions of
gravity eld.

64) Another name { the connectivity coe+cients.
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Ten basic equations of generalrelativity (in the number of independert ele-
mernts of the metric) in our days are usually written in the form

R 8vs
R i — "0 = N T X 2.123
where
Ro = @i% i @ ot igvi% i 605

is so-calledthe Ricci tensor (tensor curvature), and a simple function of coordinates
R=Rw”’ 1

is a scalar curvature. Constart Gy = 6:67£ 10 & cm®=(g ¢s?) is gravity constart
(Newtonian), and Tw» is tensor of energy-momerium for substance. Thus, equa-
tion for gravitational eld are di®ererial equations of secondorder with respect
to 4-coordinates of the metric tensor "« (x®). In the left part of (2.123) there are
characteristics of the space-time geometry, and in the right part there are char-
acteristics of matter placed in it. Thereby establisheda link between the local
curvature of space(which, according to Einstein, is gravity) and the density of
energy-momeium of substance.

In the seconddecadeof the XX certury both of
these theories { electromagnetismand gravitation {
have beencompletedand con rmed. No wonder that
soon later physicists attempted to unify them into
one. The rst was German Veyl with the article
"Gravitation and Electricity" (1918), the second{
Theodor Kaluza with the article "On the problem of
unity of physics" (1921) [22]. As it turns out, that
work of T. Kaluza had many points of contact with
the theory preseried in this book, but now we brie°y
describe its cortent.

Einstein's general theory of relativity is formu-
lated in 4-dimensional space R4, where one coordi-
nate is time-like, and the other three are space-lile.
The metric tensor “© (x®) is function of the coor-
dinates and becauseof own symmetry has 10 inde-
pendert componerts. T. Kaluza had formulated the
theory in 5-dimensional spaceRs on the same"geo-

Theodor Kaluza
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metric" principle, only having one more space-like coordinate. In his metric tensor

0
Goo

Gio
G2o
Gao

G (X°) =

Go1
G
G2
Ga1

Go2
G2
G22
Ga2

Gos
Gis
Gas
Gss

1
Gos

Gis
Gos
Gss

Gso

Gs1

Gs2

Gs3

Gss

where A;: B:C = 0;1;2; 3: 559 it becomesl5 independert componens. From part
of them will build combinations, which will compare to componerts of metric
tensor of GRT [19], [21]:

Gs: G

Go = Guo + 2% =" (2.124)
Gss

(4 °=0123):

Further from elemerts corresponding to 5-th coordinate, we construct 4 combina-
tions corresponding to electromagnetic4-potential:

The useof sudh combinations is one of so-calledmonadic method, which is usedto
separating of temporal and spatial tensor componerts in ordinary (4-dimensional)
theory. This name comesfrom the co-namedIocal vector tangert to the universe
time-lik e line [23].

Thus, we received a new tensor G,z , in which have found the place both the
Einstein tensor " , and the 4-potential of the electromagnetic eld:

0 1 0, ; ; ; 1
Goo Go1 Goz Gos | Gos 00 01 02 03| Ao
Gio Gi1 Giz Gi3|Gys “10 11 T12 T13| Ag
G (X¢)= B G20 Ga1 Ga2 Gz | Gos & = 20 ‘21 “22 23| A2
Gao Gs1 Gs2 Gasz | Gss “30 ‘31 ‘32 33| As
Gso Gs1 Gs2 Gss | Gss Ao A1 Az Az |Gss

%) Following the example of the author [19] in the numbering of the coordinates we pass for
the number 4 with reason of convenience. Entered coordinate will now be the fth both in the
order, and according to the accepted noti cation.
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In addition the tensor hasthe 15th independert elemen Gss, that there was no
correspondenceamong the known physical interactions. It should describe some
scalar eld.

Let show that the tensor G,z leadsto the correct relations for strengthes
of electromagnetic eld. According to the general principles, the strengthes are
expressedin terms of derivatives of the "p otential". In this case,a nhew metric
tensor G,z playsrole the potential, and the role of strengthesplay the connectivity
coezcients (see.for comparison(2.122)):

1
igs = EGCD(@GBD + @G | @Gus):
Lower the top index of Christo®el symbol using the generalrule of "index juggling”
[24], p. 403:

. — .C .
I AB:D — |ABGCD-

Taking into account that G, G°P ~ 1, we obtain the so-calledChristo®el symbol
of 1st kind %®

1
iaBpD = E(@GAD + @Gsp i @Gps ):

We X the secondindex, assumingB =5, and force other index to run values
A;D=%°=0123:

1
j150 = é(@Glo + @G°5i @615): (2125)

It is easyto seethat if we assumethat the metric G,z does not degend on 5-
th coordinate x°, than the rst term in bracketsis equal to 0, and we obtain an
expressionsimilar to the expressionfor the tensor of electromagnetic eld Fio :

1
j150 = E(@GOSi @G1 5) » Fo : (2126)

The expressiondor the potential and tensor of electromagnetic eld we have yet
to within constart factors (as, indeed, the gravitational eld, built on combinations
(2.124)). To nd thesecoezxcients, it is necessaryto obtain the equationsof motion
for a new theory and compare them with similar known equations. If you write
the action S¢ for the "new" gravitational and electromagnetic elds®”), then vary
the G,z in order to get extremum of S;, you can get 15 equations: ten of which
will formally coincide with the equations of the "usual" (4-dimensional) gravity
(2.123), and four more { with the equations (2.118) and (2.119) for the tensor of

%) Symbol with top index is called Christo®el symbol of 2nd kind.
57) For information how to do it in the 4-dimensional caseyou can read, for example, in [25].
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"usual" electromagnetic eld. Necessarycoezcients may be found from this, so
we nally got
2

C2
A: = _Gl, Fo = —— jig5o.
EpG—N 5 pG—NI 5;

By varying of the S; we obtain another more equation { for a scalar eld which

correspond the component Gss. It was consideredas "unnecessary", becausein

the preser time no discovered elds, which could correspond to this componert.
You can composea variation for the action Sy, of

point particle with a chargeqand massm in the elds

generated by the tensor G,; . We get 5 equations

for geddesic lines { "tra jectories" of the particle in

x". If at the sametime in the equation for the Tfth

componert to acceptdesignation

dxs _ . 1 q.
o Py (2427

the rst four equationscoincidewith the known equa-
tions of motion in the gravitational and electromag-

netic elds
d?xo 1®dX1 dXe g _.dx:
— T jjo ——+ —Fo —: 2.12
d2 ~ ''° ds ds m ° ds (2.128)
Thus, by increasing the dimension of the spaceper Oskar Klein

unit metric tensor themsehesis able to contain both
gravity and electromagnetism. In other words, the electromagnetic eld is possible
to "geometrize". And if initially (in the mentioned article of T. Kaluza) this was
done only in the rst approximation, then later through the works of O. Klein
(1926) the justice of the 5-dimensionaltheory was proved in the general.
However, the time has cometo deal with one indispensablecondition, which
should carried out if we want to Kaluza { Klein theory wasright. To obtain from
Christo®el symbol of 5-dimensionalworld an expressionthat resenblesthe tensor
an electromagnetic eld (see(2.126)and above), we have to agreewith requiremert
that the elemens G,; of its metric do not depend on the 5th coordinate®®. With
what such a condition could be related in the real world? T. Kaluza called this
requiremert as "cylindricit y condition" in his article. A. Einstein did not like
T. Kaluza theory, especially this condition®®). Much later, he seemsto agreewith
the ideaof uni cation, but the requiremert of "cylindricit y" wasstill criticized. At
1938A. Einstein and P. Bergman published an article "The generalization of the

%) |n fact, ascan be seenfrom (2.125), it takeslessthan a common condition that "only" Gu
elemerts do not depend on x°.
%) That he delayed the publication for more than two years [19].
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theory of electricity by Kaluza", wherethey o®ereda di®eren way of explaining of
unobsenability of fth coordinate. It wassuggestedhat the G,; not independert
from x°, but that by 5-th coordinate the all world is focusedin a very small range
of [0;, s]. The value , 5 should be so small that for any function A usedin the
theory, is performed ]

@\

@,sé

which leadsto insigni cance of derivativesby x°.

This ideawas developed to allow of the 5-th coordinate acceptany values, but
on the condition that the function A are periodic in x® with very small period
, 5. In this and in other casesthe world turns closedon the fth dimension. This
property of spacehas been called cyclicity, or compactnessby given dimension.
The operation of suc "closure” is called compacti ¢ ation. Fig. 2.10 shows this

A,

Figure 2.10: "Mathematical* compacti cation

conceptin a typical for mathematics manner. Due to lack of dimensionsin the
°at picture all 4-dimensional space-timeis shown as a single axis x' . The plane
de ned by axesx’ and x° on the "gure shows 5-dimensional spaceof Kaluza -
Klein. Some potential A(x,) dependson all of its coordinates, but dependence
on x® is periodic. For this reason, we can only consider some part of the 5th
dimension, where x® varies from  ¥%4to ¥ (corresponding edgesof the plane {
straight lines { designatedas a and b). Since the spaceoutside of these edges
is not consideredin theory, the a and b can be coincided (glued). As a result,
spacerolled up into cylinder of very small radius @ 5=2%0n the 5th measuremen
Fifth coordinate will "cycling up"”, now it wil be counted along the circular arc
which is obtained when the cylinder section is perpendicular to the axis. This
compacti cation scheme can be found in the most literature on this topic. Its
only purposeis to obviously illustrate the idea of "rolling up" of the space,and
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Figure 2.11: "Physical" compacti cation

nothing more. Meanwhile, the question arises: can not there be physical e®ects,
which indicates on the presenceof the compacti ed dimensions? Periodic in x°
potential A(x,) is showvn on the Fig. 2.11. Vector es is the basisvector along the
axis of x°. Let us assumethat derivative @A, in principle, capable of exerting a
force on the point-lik e particle. Over a length of one period of x° this derivative,
which is componert of gradient @A, varies sinusoidally and changing magnitude
and direction, so that integral on whole period is 0. However, at time intervals
which is lessthan Ts = | 5=c the potential A hastime to give some acceleration
to test particle (which, for simplicity, view point). Acceleration generatesspeed
and, in turn, displacemen. If we considerthe pattern in isolation from the rest
of space measuremets and elds, then nothing peculiar happens, the particle
will shifted strictly on the direction of x°. However, considering the presenceof
electromagnetic eld, sudch conclusion becomesnot obvious. For example, as we
know, the Lorentz force is directed perpendicular to the velocity. If the velocity
acquired due to @A will causethe action of the Lorentz force, the last will be
directed perpendicular to x°. Due to °uctuation of the speedon x® the Lorentz
force will alsobe variable both in magnitude and direction. It will causeof "jitter"
of particle with very high frequency and small amplitude in ordinary space. It's
time to recall the quantum "jitter" { Zitterb ewegung! Weaknessof this argumernt
is the action of the Lorentz force when the particle moves along the x°. Should
someforce appears?
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Kaluza { Klein theory appearedat the beginning of quantum medanics, but
still managedto remain completely classical. O. Klein and V.A. Fock tried to t
it to quantum laws (1926). In particular, it hasbeenshown that if analogueof the
relativistic wave equation is written in 5-dimensional®at space-time

@@* =0 () @ i@G i@ i@ i@ =0¢
it comesto the 4-dimensional equation’®

2
@@""+m~;2a =0 1=01L23

if the total wave function dependson the 5th coordinate as
3 .

2 = A )exp itox® (2.129)

Here A(x") dependsonly on the four obsened coordinates. That fact, that instead
equation in curved 5-space
GAB @@a - O

there was consideredthe equation in °at space-time,in this caseit should not
give signi cant a®ecton the result due to relative weaknessof gravitational eld
(the behavior of particles in quantum medanicsbasically substartially determined
by the action of much stronger electromagnetic interaction). We can consider
this result as rst approximation giving the main features of the behavior of the
guartities in the caseof such situation.

A few words should be said why Kaluza { Klein theory has not won general
adknowledgemen. Counter-argumerts about vaguenessof physical meaning and
non-obsenability of 5th coordinate, the absencen Nature of scalar eld assaiated
with Gss, the lack of new predictions of theory etc., of course,would not be able to
play a fatal role. Discovery of newtypesof interactions { strong nuclear and weak
{ becomefatal to the 5-dimensionaltheory of uni cation of electromagnetismand
gravity. Purposeof the theory was devalued: what is the point to unify only two
forces,if other also exist?!

Here, nally, our story cameto a placewhereit is conveniert to show that talk
about the Kaluza { Klein theory was started not without purpose. It turns out
that it receive the "protection”, and such that it is able to eliminate all expressed
argumerts against, including suc "one hundred percert", asthe strong and weak
interactions! This is a new quantum theory, expounded in this book. First of all,
in the new theory shows that the strong and weak nuclear interactions are not
fundamertal. They arise as a result of interference and substartially shawvn in
the so-calledclosebinary and ternary quantum systems, consideredas modes of

%) Which is today known asthe Klein { Gordon { Fock (K GF) equation.
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oscillations of vacuumwith order more higher than zero’?). Thesetwo modeswith
someassaiated oscillations obsened as mesonsand baryons. Thus, we are back
to a situation wherethe world is ruled only by electromagnetismand gravity.

Further, so needed"cylindricit y condition" of T. Kaluza (or in modern ter-
minology, the compactnessof the 5th dimension) is one of the results of the new
theory, obtained in passertirely for another purpose. The conceptof quasi-neutral
vacuum, which in its properties reminds plasma, is usedaspart of newtheory. One
of solutions for such vacuum are spherically symmetrical oscillating °uctuations
of charge density, similar to Langmuir oscillations in plasmaby nature. They are
identi ed asthe electric chargesof obsened objects of microcosm (of elemenary
particles and their systems). Frequency! ¢ of theseradial oscillations dependsonly
on the properties of vacuum, and it is the samefor all °uctuations. Principle of
least action leadsto syndironizing the oscillations of all °uctuations. As a result
the actual electromagneticinteraction is having one "hidden" degreeof freedom
{ very high frequency oscillation. In intrinsic referencesystem of ead obsened
chargeit may beintro duceda radial coordinate Hamiltonian conjugatedto density
of eld momertum for spherically symmetric oscillations. Suc radial coordinates
taken at the area of di®erert °uctuations can neverthelessbe consideredas be-
longing to one spaceby syndironizing of all °uctuations. They can be considered
as an additional dimension x° in the spirit of the Kaluza { Klein theory. Small
"compacti cation" radius for this dimensionis assaiated with high frequency of
oscillation. In con rmation of thesewords it is enoughto imagine that charge q
in the relation (2.127)

dxs _ pl q
ds ' 2"G, m

oscillatesin a sinusoidal manner. As for the expression(2.129), in the new theory
something similar is obtained by solving Klein { Gordon { Fock equation under
the assumptionthat the density of momertum can have an imaginary addition 72,
In this casethe radial coordinate r can be regarded as appearing dynamically as
conjugatedto imaginary part of momertum ¢, introducedin statemert of the task.

Not only QTFM can renders a service for the Kaluza { Klein theory, but
also vice versa. The theory presened in this book was intended as a relativistic
and quantum, but does not included gravity. Now, thanks to sud remarkable
coincidenceswith the Kaluza { Klein theory and opportunities to return in its
primeval 5-dimensional form, it is occur that gravitational eld does not out of
attention. Tednically, it is the generalrelativit y theory, but now we additionally
exactly realize how Nature achievesthe unity of all interactions. We still turn to
the problem of the gravity as a fundamertal interaction in Chapter ??, after the

™) Zero mode corresponds to the observed electromagnetic (i.e. simply electric) charge.

2) This assumption follows from the adopted postulates that the observed change of state of
guantum object always requires a nite (non-zero) time. In the sametime the dynamic equations
are local, soif the dynamic values oscillate, equations can easily "catch" them in state with any
phase. And this is description by complex values...
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solution of the universal dynamic equation will give us the "eld with the mass.
Study of systemsof such “elds allows us to obtain the generalexpressionfor their
interaction. Unfortunately it doesnot describe gravity and electromagnetism, so
this weight temporarily remain on the shoulders of the general relativit y theory
as a theory serving for this purpose, as well as the Kaluza { Klein theory as a
uni ed theory. Furthermore, in Chapter ??, we will be nally found indications
that gravity, probably, is not a fundamertal interaction, that it is a sort of second-
order e®ectsdue to relativism in "carrier* medium sud as vacuum.



Bibliograph y

[1] L. Shi®, Quantum medanics. { Moscav : Publishing of foreign literature,
1959.

[2] P. Dirac, Scieni ¢ collected works, vol. I. Quantum theory. { Moscaw : Fiz-
matlit, 2002.

[3] V.E. Kuzmichev, Laws and formulas of physics. Handbook. { Kiev : Naukova
dumka, 1989.

[4] Physical encyclopaedia,v. 3 / Edited by A. Prokhorov. { Moscov : Great
Russian Encyclopaedia, 1992.

[5] E.V. Shpolsky, The atomic physics, v.l. Introduction to atomic physics. {
Moscaowv : Nauka, 1984.

[6] A. Messia, The Quantum Mechanics,v. 2. { Moscow : Nauka, 1979.

[7] B. Dubrovin, S. Novikov, A. Fomenko, The modern geometry. { Moscaw :
Nauka, 1979.

[8] Ch. Poole, The referencebook on physics.{ Moscow : Mir, 2001.
[9] B. Spassky The history of physics, part 11. { Moscaw : Higher school, 1977.
[10] L. Okun, Physics of elemenary particles. { Moscow : Nauka, 1988.

[11] Handbook of mathematical functions / Edited by M. Abramowitz and |. Ste-
gun. { Moscow : Nauka, 1979.

[12] Mathematical encyclopaedia,v. 5/ Edited by I.Vynogradov. { Moscow :
Soviet Encyclopaedia, 1985.

[13] L. Landau, E. Lifshitz, Quantum medanics. Theoretical physics, vol. 111. {
Moscow : Nauka, 1989.

[14] H. Bateman, A. Erdelyi, Higher transcenderal functions, vol. 1. { Moscow :
Nauka, 1973.

139



140 BIBLIOGRAPHY
[15] P. Kudry avtsev, History of physics,vol. I11. { Moscow : Prosveshtenie, 1970.

[16] K. Ogarnyan, What is spin? // Physics abroad 1988 : coll. art.; transl. {
Moscow : Mir, 1988.

[17] Physical encyclopaedia,v. 4 / Edited by A. Prokhorov. { Moscav : Great
Russian Encyclopaedia, 1994.

[18] I. Gradstein, I. Ryzhik, Tables of integrals, seriesand products. { 7-th ed. {
Saint-Petersberg : BHV-P eterburg, 2011.

[19] Yu. Vladimirov, Space-time: evidernt and latent dimensions.{ Moscow :
Nauka, 1989.

[20] E. Purcell, Electricity and magnetism. Berkeley physics course, vol. 2. {
Moscawv : Nauka, 1983.

[21] O. Boyarkin, Introduction to elemenary particle physics.{ Moscav : URSS,
2006.

[22] Albert Einstein and theory of gravitation: Collection of articles to certerary
of A. Einstein { Moscaw : Mir, 1979.

[23] Yu. Vladimirov, Geometrophysics{ 2-nd ed.{ Moscav : BINOM, 2012.
[24] Yu. Dimitrienk o, Tensorcalculus.{ Moscow : Vyschaya shkola, 2001.

[25] L. Landau, E. Lifshitz, Field theory. Theoretical physics, vol. Il. { Moscaw :
Nauka, 1988.



